第一范文网 - 专业文章范例文档资料分享平台

2018年江苏省扬州市中考数学试卷含答案解析(Word版)

来源:用户分享 时间:2025/5/30 1:47:13 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

黄 金 高 考 点

∵CD∥AN, ∴∠CPN=∠DCM,

∵△DCM是等腰直角三角形, ∴∠DCM=∠D=45°, ∴cos∠CPN=cos∠DCM=

(3)如图3中,如图取格点M,连接AN、MN.

∵PC∥MN, ∴∠CPN=∠ANM, ∵AM=MN,∠AMN=90°, ∴∠ANM=∠MAN=45°, ∴∠CPN=45°.

【点评】本题考查三角形综合题、平行线的性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题,属于中考压轴题.

28.(12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.

(1)当t=2时,线段PQ的中点坐标为 (,2) ;

黄 金 高 考 点

(2)当△CBQ与△PAQ相似时,求t的值;

(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.

【分析】(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;

(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:

①当△PAQ∽△QBC时,可得t的值;

(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D. 【解答】解:(1)如图1,∵点A的坐标为(3,0), ∴OA=3,

当t=2时,OP=t=2,AQ=2t=4, ∴P(2,0),Q(3,4), ∴线段PQ的中点坐标为:(故答案为:(,2);

(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形, ∴0<t<3,

∵四边形OABC是矩形,

),即(,2);

,②当△PAQ∽△CBQ时,

,分别列方程

黄 金 高 考 点

∴∠B=∠PAQ=90°

∴当△CBQ与△PAQ相似时,存在两种情况: ①当△PAQ∽△QBC时,∴

4t2﹣15t+9=0, (t﹣3)(t﹣)=0, t1=3(舍),t2=, ②当△PAQ∽△CBQ时,∴

t2﹣9t+9=0, t=∵∴x=

, >7,

不符合题意,舍去,

综上所述,当△CBQ与△PAQ相似时,t的值是或(3)当t=1时,P(1,0),Q(3,2),

把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:

,解得:

∴抛物线:y=x2﹣3x+2=(x﹣)2﹣, ∴顶点k(,﹣), ∵Q(3,2),M(0,2), ∴MQ∥x轴,

作抛物线对称轴,交MQ于E, ∴KM=KQ,KE⊥MQ, ∴∠MKE=∠QKE=∠MKQ,

黄 金 高 考 点

如图2,∠MQD=∠MKQ=∠QKE, 设DQ交y轴于H, ∵∠HMQ=∠QEK=90°, ∴△KEQ∽△QMH, ∴

∴,

∴MH=2, ∴H(0,4),

易得HQ的解析式为:y=﹣x+4,

则,

x2﹣3x+2=﹣x+4,

解得:x1=3(舍),x2=﹣, ∴D(﹣,

);

同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE, 由对称性得:H(0,0), 易得OQ的解析式:y=x,

则,

x2﹣3x+2=x,

解得:x1=3(舍),x2=, ∴D(,);

2018年江苏省扬州市中考数学试卷含答案解析(Word版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c46rx56x91m7b8vd538ce5nrap1rg1l00xkj_8.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top