2.放缩后为“差比”数列,再求和 例3.已知数列{an}满足:a1?1,an?1?(1?
nn?1.求证: )a(n?1,2,3?)a?a?3?nn?1n2n2n?13.放缩后成等差数列,再求和
例4.已知各项均为正数的数列{an}的前n项和为Sn,且an2?an?2Sn.
an2?an?12(1) 求证:Sn?4;
(2) 求证:
SnS?1?S1?S2?????Sn?n?1 229 / 10
练习:
1.(08南京一模22题)设函数f(x)?1x2?bx?3,已知不论?,?为何实数,恒有
44f(cos?)?0且f(2?sin?)?0.对于正数列?an?,其前
n项和Sn?f(an),(n?N*).
(Ⅰ) 求实数b的值;()求数列?an?的通项公式; (Ⅲ)若并证明之.
cn?1,n?N?,且数列?cn?的前1?ann项和为Tn,试比较Tn和1的大小
62.(04全国)已知数列{an}的前n项和Sn满足:Sn?2an?(?1)n, n?1
(1)写出数列{an}的前三项a1,a2,a3;(2)求数列{an}的通项公式; (3)证明:对任意的整数m?4,有
1117????? a4a5am83.(07武汉市模拟)定义数列如下:a1?2,an?1?an2?an?1,n?N? 求证:(1)对于n?N?恒有an?1?an成立; (2)当n?2且n?N?,有
an?1?anan?1?a2a1?1成立; (3)1?
122006?111?????1 a1a2a200610 / 10
相关推荐: