第一范文网 - 专业文章范例文档资料分享平台

2014年中考数学第一轮复习导学案:圆的有关概念与性质

来源:用户分享 时间:2025/5/24 14:06:07 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2.(广西钦州)已知:如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为5.求⊙O1的半径. yO1O AOA B xB图2

??CD??DE?,∠BAE=90°. 3.(湖北宜昌)已知:如图,⊙O的直径AD=2,BC(1)求△CAD的面积;

(2)如果在这个圆形区域中,随机确定一个点P,那么点P落在四边形ABCD区域的概率是多少?

4.(湖北黄冈)如图,已知AB是⊙O的直径,点C是⊙O上一点,连结BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连结BF,与直线CD交于点G.求证:BC?BG?BF.

2

- 9 -

【参考答案】 选择题 1. B 2. D 3. C 4. D 5. B 6. A 7. D 8. B 9. C 10. D 11. C

【解析】本题考查圆的有关性质、函数图象等知识,点P从点O向点A运动,OP逐渐增大,当点P从点A向点B运动,OP不变,当点P从点B向点O运动,OP逐渐减小,故能大致地刻画s与t之间关系的是C. 填空题 1. 30° 2. 40 3. 30

4. 2?3或2?3 5. 2 6. 4 7. 3 8. 28

- 10 -

9. 64o 解答题

1. 证明:(1) 连结AC,如图。

∵C是弧BD的中点 ∴∠BDC=∠DBC 又∠BDC=∠BAC

在三角形ABC中,∠ACB=90°,CE⊥AB ∴ ∠BCE=∠BAC ∠BCE=∠DBC

∴ CF=BF 因此,CF=BF.

(2)证法一:作CG⊥AD于点G,

∵C是弧BD的中点

∴ ∠CAG=∠BAC , 即AC是∠BAD的角平分线. ∴ CE=CG,AE=AG

在Rt△BCE与Rt△DCG中,CE=CG , CB=CD ∴Rt△BCE≌Rt△DCG ∴BE=DG

∴AE=AB-BE=AG=AD+DG 即 6-BE=2+DG

∴2BE=4,即 BE=2

- 11 -

又 △BCE∽△BAC ∴ BC?BE·AB?12

2BC??23(舍去负值)

∴BC?23

(2)证法二:∵AB是⊙O的直径,CE⊥AB ∴∠BEF=?ADB?90?, 在Rt△ADB与Rt△FEB中, ∵?ABD??FBE ∴△ADB∽△FEB,则即

ADAB ?EFBF26, ∴BF?3EF ?EFBF又∵BF?CF, ∴CF?3EF 利用勾股定理得:

BE?BF2?EF2?22EF

又∵△EBC∽△ECA 则

CEBE2,即则CE?AE?BE ?AECE2∴(CF?EF)?(6?BE)?BE

即(3EF?EF)?(6?22EF)?22EF

2∴EF?∴BC? 2 2BE2?CE2?23.

2.解:过点O1作O1C⊥AB,垂足为C, 则有AC=BC.

yO1O CAOA B xB由A(1,0)、B(5,0),得AB=4,∴AC=2.

- 12 -

图2

2014年中考数学第一轮复习导学案:圆的有关概念与性质.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c46z6v11giy5zpak1bu8q_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top