第一范文网 - 专业文章范例文档资料分享平台

滑动轴承实验指导书(更新并附实验报告) - 图文

来源:用户分享 时间:2025/6/2 22:14:15 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

滑动轴承实验

一、概述

滑动轴承用于支承转动零件,是一种在机械中被广泛应用的重要零部件。根据轴承的工作原理,滑动轴承属于滑动摩擦类型。滑动轴承中的润滑油若能形成一定的油膜厚度而将作相对转动的轴承与轴颈表面分开,则运动副表面就不发生接触,从而降低摩擦、减少磨损,延长轴承的使用寿命。

根据流体润滑形成原理的不同,润滑油膜分为流体静压润滑(外部供压式)及流体动压润滑(内部自生式),本章讨论流体动压轴承实验。

流体动压润滑轴承其工作原理是通过韧颈旋转,借助流体粘性将润滑油带人轴颈与轴瓦配合表面的收敛楔形间隙内,由于润滑油由大端人口至小端出口的流动过程中必须满足流体流动连续性条件,从而润滑油在间隙内就自然形成周向油膜压力(见图1),在油膜压力作用下,轴颈由图l(a)所示的位置被推向图1(b)所示的位置。

图1 动压油膜的形成

当动压油膜的压力p在载荷F方向分力的合力与载荷F平衡时,轴颈中心处于某一相应稳定的平衡位置O1,O1位置的坐标为O1(e,Φ)。其中e =OO1,称为偏心距;Φ为偏位角(轴承中心O与轴颈中心O1连线与外载荷F作用线间的夹角)。

随着轴承载荷、转速、润滑油种类等参数的变化以及轴承几何参数(如宽径比、相对间隙)的不同.轴颈中心的位置也随之发生变化。对处于工况参数随时间变化下工作的非稳态滑动轴承,轴心的轨迹将形成一条轴心轨迹图。

为了保证形成完全的液体摩擦状态,对于实际的工程表面,最小油膜厚度必须满足下列条件:

hmin?S?Rz1?RZ2? (1)

式中,S为安全系数,通常取S≥2;Rz1,RZ2分别为轴颈和铀瓦孔表面粗糙度的十点高度。

滑动轴承实验是分析滑动轴承承载机理的基本实验,它是分析与研究轴承的润滑特性以及进行滑动轴承创新性设计的重要实践基础。

根据要求不同,滑动轴承实验分为基本型、综合设计型和研究创新型三种类型。

二、实验目的

(1)掌握实验装置的结构原理,了解滑动轴承的润滑方式、轴承实验台的加载方法以及轴承实验台主轴的驱动方式及调速的原理。

(2)掌握实验台所采用的测试用传感器的工作原理。

(3)通过实验测试的周向油膜压力分布及轴向油膜压力分布,掌握滑动轴承中流体动压油膜形成的机理及滑动轴承承载机理。

(4)通过实验掌握工况参数和轴承参数的变化对滑动轴承润滑性能及承载能力的影响。

三、实验内容

对于基本型实验,实验内容如下:

(1)轴承中间平面上周向油膜压力分布曲线图[见图2(a)]和轴向油膜压力分布曲线图[见图2(c)]。

(2)周向油膜压力分布曲线图的承载分量的曲线图[见图2(b)],求轴承的端泄影响系数K。

考虑有限宽轴承在宽度B方向的端泄对油膜承载量的影响,其影响系数K可由下式求出:

K?FpmBd (2)

式中,F为轴承外载荷,N;B为轴承有效工作宽度,mm;d为轴颈直径,mm;pm为根据油膜压力承载分量的曲线图求出的动压油膜的平均压力,如图2(b)所示。

图2(a)为实测上轴瓦上均布测点l~7位置处的油膜压力形成的周向油膜压力分布曲线;图(b)为过这7个分点分别引垂线段l—1”、2—2”、…、7—7”,使之分别等于图(a)中的油膜压力值的垂直分量后连成的光滑曲线,该曲线被称为动压油膜的承载分量曲线;图(c)为轴向油膜压力分布曲线。

根据承载分量曲线和直径所园成的图形面积等于平均压力pm与直径围成的矩形面积相等的条件,通过数方格数的方法即可求出pm大小。再将求出的pm值代人式2即可求出K。

图2 滑动轴承油膜压力分布曲线图

四、实验装置

实验装置采用西南交通大学研制的ZHS20系列滑动轴承综合实验台。该实验台主要由主轴驱动系统、静压加载系统、轴承润滑系统、油膜压力测试系统、油温测试系统、摩擦观察测试系统以及数据采集与处理系统等组成。

1、主轴驱动系统及电机选择

实验台的主轴支承在实验台箱体上的一对滚动轴承上。该主轴的驱动电动机需满足无极调速、低速大转矩及实验过程中能快速启停等要求。

驱动电机主要有交流异步电动机、直流电动机、步进电机、交流(直流)伺服电动机等类型。

交流伺服电动机的工作原理与普通交流异步电动机相似,但交流伺服电动机的转子电阻比异步电机的大得多,其转矩特性(转矩T与转差率S的关系)也因此较普通电机有很大区别(见图3)。它可使临界转差率大于1,这样不仅使转矩特性更接近于线性.而且具有较大的起动转矩,因此,伺服电机具有起动快、灵敏度高的特点。

图3 伺服电动机的转矩特性

目前,基于稀土木磁体的交流水磁伺服驱动系统,能提供最高水平的动态响应和扭矩密度。所以用交流伺服驱动取替传 统交流调速、直流和步进调速驱动,以便使系统性能达到一个全新的控制水平,从而获得更宽的调速范围和更大的低速扭矩。因此,本实验台选用了交流伺服电动机,其优点归纳如下: (1)控制精度高。

交流伺服电机的控制精度由电机轴后端的旋转编码器保证,因此交流伺服具有极高的控制精度。

(2)低频特性好。

步进电机在低速时易出现低频振动现象;普通交流电机由变频器进行调速,在低频时的力矩小;直流电机在低速的控制极不稳定。而交流伺服电机运转非常平稳.即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可以克服机械的刚性不足缺点,并且系统内部具有频率解析功能(FFT),可检测出机械的共振点,使于调整系统。 (3)矩频特性好。

交流伺服电机为恒力矩输出,即在其额定转速(一般为1000r/min)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 (4)过载能力强。

交流伺服电机具有较强的过载能力。它具有速度过载和转矩过载能力。其最大转矩为额定转矩的3倍,可用于克服惯性负载在启动瞬间的惯性力矩。

(5)运行稳定。

交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构造成位置环和速度环,一般不会出现步进电机的丢步或过冲现象,控制性能更为可靠。 (6)响应速度快。

交流伺服系统的加速性能较好,从静止加速到其额定转速1000 r/min仅需几毫秒,可用于要求快速启停的控制场合。

2、液压系统

实验台的液压系统功能,—是为实验轴承提供循环润滑系统提供压力供油。液压系统框图如图4所示。

为了保证液压加载系统的稳定性,该系统采用变频恒压的接制方式。变频恒压供油系统主要由油泵、变频器、压力传感器组成,如图5所示。通过压力传感器对加载系统的压力监测,实时调节油泵电机的转速使电机—油泵—液压油路系统组成一个闭环控制系统。由于在各种转速下形成的油膜压力和端泄情况有—定的差别,通过变频恒压系统能真正地实现在各种转速下加载压力保持不变。

若液压加载系统向固定于箱座上的加载盖板内的油腔输送的供油压力为p0时,载荷即施加在轴瓦上,则轴承载荷为:

F?9.81?p0A?G0? N (3)

式中,p0为油腔供油压力,kgf/cm2;A为油腔在水平面上投影面积,A=60 cm2;Go为初始

载荷(包括轴瓦自重、压力变送器重量等),Go=7.5kgf。

滑动轴承实验指导书(更新并附实验报告) - 图文.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4707018hs28ojit8frbw_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top