B=[0,100]; V1=1;dt=1;
x=V2;y=V1;distance=sqrt(x^2+(100-y)^2); P=[x,y];times=1; while distance>0.5 x= x+dt*(V2-V1*x/distance); ¢Ù y=y+dt*V1*(100-y)/distance; distance= sqrt(x^2+(100-y)^2); ¢Ú P=[P;x,y];times=times+1; end
X=P(:,1);Y=P(:,2);
plot(0,0,'r>',0,100,'r>',X,Y,'r',X,Y,'go') axis([-10,30,0,110])
Ä£ÄâÊÔÌâ¶þ
Ò»¡¢µ¥ÏîÑ¡ÔñÌâ
1£®ÔÚMATLABÃüÁî´°¿ÚÖУ¬¼üÈëÃüÁîsyms x£» int(x*sin(x))¡£½á¹ûÊÇ £¨A£©ans= sin(x)-x*cos(x)£» £¨B£©ans= cos(x)+x*sin(x)£»
£¨C£©ans= sin(x)-cos(x)£» £¨D£©ans= -1/2*cos(x)*sin(x)+1/2*x 2£®ÔÚMATLABÃüÁî´°¿ÚÖУ¬¼üÈëÃüÁîsyms x,F=1/(2+cos(x));ezplot(diff(F))£¬½á¹ûÊÇ £¨A£©»æ³öº¯ÊýFÔÚ[0£¬2? ]µÄͼÐΣ» £¨B£©»æ³öº¯ÊýFÔÚ[¨C2?£¬2? ]µÄͼÐΣ»
£¨C£©»æº¯ÊýFµÄµ¼º¯ÊýÔÚ[0£¬2? ]µÄͼÐΣ» £¨D£©»æº¯ÊýFµÄµ¼º¯ÊýÔÚ[¨C2?£¬2? ]µÄͼÐÎ 3£®ÔÚMATLABÃüÁî´°¿ÚÖмüÈëÃüÁîB=[8,1,6;3,5,7;4,9,2]£»B*B(:,2)¡£½á¹ûÊÇ
£¨A£©ans= £¨B£©ans= £¨C£©ans= £¨D£©ans=
91 67 67 67 67 91 67 67 67 67 91 67
4£®MATLABÃüÁîx = 3: 2: 100 ½«´´½¨µÈ²îÊýÁУ¬¸ÃÊýÁÐÊÇ£¨ £© £¨A£©ÒÔ3Ϊ³õÖµµÄ98¸öÊý,£» £¨B£©ÒÔ 100ΪÖÕÖµµÄ98µÄ¸öÊý£» £¨C£©ÒÔ99ΪÖÕÖµµÄ97¸öÊý£» £¨D£©ÒÔ3Ϊ³õÖµµÄ49¸öÊý¡£ 5£®MATLABÓï¾ästrcat(int2str(2008),'ÄêÊÇ', s,'Äê')µÄ¹¦ÄÜÊÇ
£¨A£©½«Êý¾Ý2008ת»»Îª·ûºÅ£» £¨B£©½«Êý¾Ý2008Óë·ûºÅ±äÁ¿ºÏ²¢£» £¨C£©½«¼¸¸ö·ûºÅ±äÁ¿ºÏ²¢ÎªÒ»¸ö£» £¨D£©½«·ûºÅ±äÁ¿×ª»»ÎªÊýÖµ±äÁ¿£»
6£®Êýѧ±í´ïʽ7sin(3+2x)+e2ln3¶ÔÓ¦µÄMATLAB±í´ïʽÊÇ¡£
£¨A£©sqrt(7*sin(3+2*x)+exp(2)*log(3)) £¨B£©sqrt(7sin(3+2x)+exp(2)log(3)) £¨C£©sqrt(7*sin(3+2*x)+e^2*log(3)) £¨D£©sqrt(7sin(3+2x)+ e^2 log(3)) 7£®Óï¾äL=sqrt(pi); x=fix(100*L)/100µÄ¹¦ÄÜÊÇ
£¨A£©½«ÎÞÀíÊý? È¡Èýλ½üËÆ£» £¨B£©½«?È¡Á½Î»½üËÆÊý £¨C£©½«?È¡Èýλ½üËÆÊý£» £¨D£©½«ÎÞÀíÊý? È¡Á½Î»½üËÆ 8£®MATLABÓï¾ä[x,y]=meshgrid(-2:2) µÄÊý¾Ý½á¹ûÖÐ
£¨A£©xÊÇÐÐÏòÁ¿£¬yÊÇÁÐÏòÁ¿£» £¨B£©xÊÇÁÐÏòÁ¿£¬yÊÇÐÐÏòÁ¿£»
195
£¨C£©yÊÇÐÐÔªËØÏàͬµÄ¾ØÕó£» £¨D£©yÊÇÁÐÔªËØÏàͬµÄ¾ØÕó 9£®MATLABµÄÓï¾äcolormap(0 0 1)
£¨A£©½«ÈýÎ¬ÍøÃæÍ¼È·¶¨ÎªºìÉ«£» £¨B£©½«ÈýÎ¬ÍøÃæÍ¼È·¶¨ÎªÂÌÉ«£» £¨C£©½«ÈýÎ¬ÍøÃæÍ¼È·¶¨ÎªÀ¶É«£» £¨D£©Óï¾äʹÓøñʽ´íÎó 10£®Éèa,b,c±íʾÈý½ÇÐεÄÈýÌõ±ß£¬±í´ïʽa+b £¨A£©ÊÇÈýÌõ±ß¹¹³ÉÈý½ÇÐεÄÌõ¼þ£» £¨B£©ÊÇÈýÌõ±ß²»¹¹³ÉÈý½ÇÐεÄÌõ¼þ£» £¨C£©¹¹³ÉÈý½ÇÐÎʱÂß¼ÖµÎªÕæ£» £¨D£©²»¹¹³ÉÈý½ÇÐÎʱÂ߼ֵΪ¼Ù ¶þ¡¢³ÌÐòÔĶÁÀí½â 1£®ÊýѧʵÑé³ÌÐòÈçÏ syms x f=3*x^2+6*x-1£»g=x^2+x-3£» R=f/g£» ezplot(R,[-10,10]) R1=diff(R,x)£» simplify(R1)£» [f1,g1]=numden(R1)£» %µÚÆßÐÐ R2=diff(R,x,2) simplify(R2) [f2,g2]=numden(R2)£» £¨1£©³ÌÐòÔËÐкó½«ÏÔʾ £¨A£©ÓÐÀíº¯ÊýµÄ·Ö×ӺͷÖĸ£» £¨B£©ÓÐÀíº¯ÊýµÄÒ»½×µ¼Êý£» £¨C£©ÓÐÀíº¯ÊýµÄ¶þ½×µ¼Êý£» £¨D£©ÓÐÀíº¯ÊýµÄÒ»½×µ¼Êý·Ö×Ó £¨2£©µÚÆßÐÐÓï¾äµÄ¹¦ÄÜÊÇ £¨A£©·ÖÀëÓÐÀíº¯ÊýµÄÒ»½×µ¼Êý·Ö×Ó£» £¨B£©·ÖÀëÓÐÀíº¯ÊýµÄ¶þ½×µ¼Êý·Ö×ӺͷÖĸ£» £¨C£©·ÖÀëÓÐÀíº¯ÊýµÄÒ»½×µ¼Êý·Öĸ£» £¨D£©·ÖÀëÓÐÀíº¯ÊýµÄÒ»½×µ¼Êý·Ö×ӺͷÖĸ 2£®ÊýѧʵÑé³ÌÐòÈçÏ L=[3/4,1/8,1/8;1/6,2/3,1/6;1/4,1/4,1/2]'; X1=[100;80;120]; X=X1;x1=X(1); for k=1:4 X=L*X x1=[x1;X(1)]; end bar(x1) %µÚ°ËÐÐ colormap([1 1 1]) £¨1£©ÊµÑé³ÌÐòÖеÄÑ»·Óï¾ä½«ÏÔʾ £¨A£©Èý½×¾ØÕóLµÄÌØÕ÷Öµ£» £¨B£©·½³Ì×éX=LXµÄ½â£» £¨C£©LXµÄµÚÒ»·ÖÁ¿Êý¾Ý£» £¨D£©ÏòÁ¿LnX±ä»¯¹æÂÉ £¨2£©µÚ°ËÐÐÓï¾äµÄ¹¦ÄÜÊÇ £¨A£©»æXµÄ±ä»¯ÇúÏߣ» £¨B£©»æÍ¼±íʾ·½³Ì×éX=LXµÄ½â£» £¨C£©»æLXµÄµÚÒ»·ÖÁ¿ÇúÏߣ» £¨D£©»æLXµÚÒ»·ÖÁ¿ÌõÐÎͼ 3£®Ê®¶þÊôÏàµÄÉúФÎÊÌâµÄMATLAB³ÌÐòÈçÏ year=input('input year:='); S='¼¦¹·ÖíÊóÅ£»¢ÍÃÁúÉßÂíÑòºï'; k=mod(year,12); if k==0,k=12;end %µÚËÄÐÐ 196 n s=S(k); s=strcat(int2str(year),'ÄêÊÇ', s,'Äê') £¨1£©ÊäÈë2000£¬ÊµÑé³ÌÐòµÄ½á¹û½«¸ø³ö £¨A£©2000ÄêÊÇÁúÄꣻ£¨B£©2000ÄêÊÇÉßÄꣻ £¨C£©2000ÄêÊÇÂíÄꣻ£¨D£©2000ÄêÊÇÑòÄê £¨2£©µÚËÄÐÐÓï¾äµÄ¹¦ÄÜÊÇ £¨A£©µ±Äê·ÝÊÇ12µÄ±¶Êýʱ¶¨Î»ÎªÖíÄꣻ £¨B£©µ±Äê·ÝÊÇ12µÄ±¶Êýʱ¶¨Î»ÎªµÚ12ÊôÏࣻ £¨C£©µ±Äê·ÝÊÇ12µÄ±¶Êýʱ¶¨Î»ÎªºïÄꣻ £¨D£©µ±Äê·ÝÊÇ12µÄ±¶Êýʱ¶¨Î»ÎªÊóÄê 4£®ÊýѧʵÑé³ÌÐòÈçÏ h=439;H=2384;R=6400; a=(h+H+2*R)/2;c=(H-h)/2; e1=c/a; b=sqrt(a*a-c*c); syms e2 t f=sqrt(1-e2*cos(t)^2); ft=subs(f,e2,e1*e1); S=int(ft,0,pi/2); L=4*a*double(S)£» V=L/(114*60)£» s1=pi*a*b/(114*60); %µÚÊ®ÐÐ Vmax=2*s1/(h+R) Vmin=2*s1/(H+R) £¨1£©ÊµÑé³ÌÐòµÄÔËÐк󣬽«ÏÔʾµÄÊý¾ÝÊÇ£¨ £© £¨A£©ÎÀÐǹìµÀµÄÖܳ¤Êý¾Ý£» £¨B£©ÎÀÐÇÔËÐеÄ×î´óËٶȺÍ×îСËÙ¶È£» £¨C£©ÎÀÐÇÔËÐÐʱÏò¾¶Ã¿Ãëɨ¹ýµÄÃæ»ý£»£¨D£©ÎÀÐÇÔËÐÐµÄÆ½¾ùËÙ¶ÈÊý¾Ý £¨2£©µÚÊ®ÐÐÓï¾äµÄ¹¦ÄÜÊÇ £¨A£©¼ÆËãÎÀÐÇÔËÐеÄ×îСËÙ¶È£» £¨B£©¼ÆËãÎÀÐÇÔËÐÐʱÏò¾¶Ã¿Ãëɨ¹ýµÄÃæ»ý; £¨C£©¼ÆËãÎÀÐÇÔËÐеÄ×î´óËÙ¶È£» £¨D£©¼ÆËãÎÀÐÇÔËÐйìµÀµÄÖܳ¤ Èý¡¢³ÌÐòÌî¿Õ 1£®Î¬Î¬°²ÄᣨViviani£©ÌåÊÇÔ²ÖùÌå( x ¨C R/2)2 + y2 ¡ÜR2/4±»ÇòÃæx2 + y2 + z2 = R2Ëù¸îϵÄÁ¢Ìå¡£ÏÂÃæµÄʵÑé³ÌÐò¹¦ÄÜÊÇÈ¡R=2ÇóÌå»ýÉϰ벿·Ö£¬ÏÈÀûÓ÷ûºÅ¼ÆËã´¦ÀíÖØ»ý·Ö²¢×ª»»ÎªÊýÖµÊý¾Ý£¬ÔÙÓÃÃÉÌØ¿¨ÂÞ·½·¨¼ÆËãÌå»ý×ö¶Ô±È¡£Íê³ÉÏÂÃæ³ÌÐòÌî¿Õ syms x y; f=sqrt(4-x^2-y^2); y1=-sqrt(2*x-x^2); y2=sqrt(2*x-x^2)£» ¢Ù S1=int(f,y,y1,y2); S2=int(S1,x,0,2) V= double(S2) ; ¢Ú P=rand(10000,3); X=2*P(:,1);Y=2*P(:,2)-1;Z=2*P(:,3); II=find((X-1).^2+Y.^2<=1&Z<=sqrt(4-X.^2-Y.^2)); V1=8*length(II)/10000 2£®¶ÔÓÚÈÎÒâÕýÕûÊýn£¬Èç¹ûn Ö»Äܱ»1ºÍËü×ÔÉíÕû³ý£¬Ôò³ÆÕâ¸öÊýÎªËØÊý(»òÖÊÊý)¡£ÅÐËØÊý³ÌÐòµÄË㷨˼ÏëÊÇÊÔÉÌ·¨£¬¼´ÓÃ2£¬3,??£¬£¨n-1£©È¥³ýn£¬Èç¹ûÄܱ»ÕâЩÊýÖÐÒ»¸öÕû³ý£¬ÔònÊÇËØÊý£¬·ñÔò²»ÊÇËØÊý¡£Íê³ÉÏÂÃæÌî¿Õ¡£ n=input('input n:='); 197 for k=2:n-1 if mod(n,k)== 0 ,break,end ¢Ù end if k disp('²»ÊÇËØÊý') else disp ('ÊÇËØÊý') ¢Ú end 3£®ÒѾ֪µÀÎÒ¹ú1991ÖÁ1996ÄêµÄÈË¿ÚÊý¾Ý£¬·Ö±ðÀûÓÃÏßÐÔº¯ÊýºÍÖ¸Êýº¯Êý×öÊý¾ÝÄâºÏʵÑ飬²¢»æ³öÊý¾ÝÄâºÏÇúÏßµÄͼ£¬¼ÆËã³ö²Ð²îƽ·½ºÍ£¬Íê³ÉÈçÏÂʵÑé³ÌÐòÌî¿Õ T=[1991:1996]'; N=[11.58, 11.72, 11.85, 11.98, 12.11, 12.24]'; L=polyfit(T,N,1); PL=polyval(L,T); figure(1),plot(T,N,'o',T,PL) RL=sum((N-PL).^2) E=polyfit(T,log(N),1); PE= exp(polyval(E,T))£» ¢Ù figure(2),plot(T,N,'o',T,PE) RE= sum((N-PE).^2) ; ¢Ú L2008=polyval(L,2008) E2008=exp(polyval(E,2008)) ?cos?4£®¶þ½×Õý½»¾ØÕóA???sin??sin???×÷ÓÃÓÚÏòÁ¿? ʱ£¬ÆäЧ¹ûÊǽ«ÏòÁ¿? Ðýת£¬Ðýת½Çcos??Ϊ¦È£¨ÄæÊ±ÕëÐýתΪÕý£©¡£°ÑÒ»¸öÒÔÔµãΪÖÐÐĵÄÕý·½ÐÎÐýתpi/24£¬²¢×öÊʵ±ËõС£¬µü´ú30´ÎÐγÉÏÂͼ¡£Íê³ÉÈçϳÌÐòÌî¿Õ xy=[-4 -4;4 -4;4 4;-4 4;-4 -4]; A=[cos(pi/24) -sin(pi/24);sin(pi/24) cos(pi/24)]; x=xy(:,1);y=xy(:,2); axis off line(x,y) for k=1:30 xy=.89*xy*A'; x= xy(:,1) ; ¢Ù y= y=xy(:,2) ; ¢Ú line(x,y), end 198
Ïà¹ØÍÆ¼ö£º