即当x?30时,f?x??g?x?;当x?30时,f?x??g?x?;当x?30时,f?x??g?x?
?当市场价格大于30元/kg时,采用新养殖法;等于30元/kg时,两种方法均可;小于30元/kg时,采用旧养殖法.
x2y2??1(2)见解析 20.(1)43解:(1)由椭圆的离心率为
1c1知, ?,a?2c, ∴b2?a2?c2?3c2, ∴b?3c, 2a22又四边形CF1DF2面积最大值为2bc?23, ∴23c?23,∴c?1,a?2,b?3,
x2y2??1; 所以椭圆E的方程为43(2)当直线l的斜率k存在时,设l:y?kx?m,A?x1,y1?,B?x2,y2?, 由{y?kx?m 得3?4k2x2?8kmx?4m2?12?0, 223x?4y?12???8km4m2?12,x1x2?所以x1?x2?, 223?4k3?4k·?0,即x1x2?y1y2?1?k2x1x2?km?x1?x2??m2 因为OA?OB,所以OAOB4m2?128k2m27m2?12?12k22?1?k???m??0, 2223?4k3?4k3?4k???2?所以m2?m22112?; 1?k2,原点O到直线l的距离d?2771?k??当直线l的斜率不存在时,设直线l的方程为x?m,
?34?m2则A?m,?2??解得m??????34?m2,B?m,??2?????????,由OA?OB得m???2?34?m24???0,
221221,所以此时原点O到直线l的距离为. 77221. 7综上可知,原点O到直线l的距离为定值21.(1)见解析(2)见解析
解:(1)由题意,函数f?x???x?2?e?x12x?x?2,可得定义域???,???, 2
f??x???x?1??ex?1?,令f??x??0得x?0或x?1,
可得x,f?x?,f??x?的变化情况如下表:
x ???,0? + 0 ?0,1? - 1 ?1,??? + f??x? 0 0 f?x?
极大值 极小值 所以函数的单调递增区间是???,0?,?1,???;单调递减区间是?0,1?, 当x?0,f?x?有极大值f?0??0,当x?1,f?x?有极小值f?1??5?e. 2(2)令g?x??f?x??3?131?x1x?x,则g??x???x?1??e?x??,
22?62?设h?x??e?x131x?,则h??x??ex?, 222x当x?1时,h??x??e?1?0恒成立,所以h?x?在?1,???上是增函数, 2所以h?x??h?1??e?2?0,
又因为x?1,x?1?0,所以g??x???x?1??e?x??13?x???0, 22?所以g?x??f?x??131x?x在?1,???上是增函数, 62所以g?x??g?1??1711?e?0,也就是f?x??x3?x?0,
626131x?x. 621t2π26(t为参数) 极坐标方程为??(??R) (Ⅱ)
335t2
即当x?1时,f?x???x???22.(Ⅰ) 直线l的参数方程为??y???
?x???解:(Ⅰ)直线l的参数方程为??y???极坐标方程为??
1t2(t为参数) 3t2π
(??R) 3
(Ⅱ)曲线C的普通方程为(x?2)2?y2?9
将直线l的参数方程代入曲线C:(x?2)2?y2?9中,得t2?2t?5?0, 设点A,B对应的参数分别是t1,t2,则t1?t2?2,t1t2??5
t1?t2t1?t222?4?(?5)261111???????? |OA||OB|t1t2t1?t2t1t255
相关推荐: