国外低碳经济研究综述
尹希果 霍婷
【内容提要】低碳经济是发达国家为应对气候变化而提出的新的经济发展模式,它正成为一种新的国际潮流,影响着各国的经济社会发展进程。本文从低碳经济与经济增长、低碳经济实现的制度安排和不同国家的低碳经济进程三个方面,对国外相关文献进行梳理,分析认为:影响一国碳排放量的因素有人口、GDP、能源强度、碳强度及国际贸易等,且从长期来看,碳减排不会对经济增长造成负面影响;征收碳税和碳交易制度是目前实现低碳经济的主要制度安排;无论是发达国家还是发展中国家都在努力行动,实现经济发展模式向低碳经济转型。
【关 键 词】低碳经济/经济增长/制度安排/国别研究
引言
随着世界工业经济的发展、人口的剧增、人类欲望的无限上升和生产生活方式的无节制,世界气候面临着越来越严重的问题。尤其是由化石燃料过度消耗所导致的全球变暖,引起了世界范围的广泛关注。全球变暖严重危害了社会经济的发展,深刻触及到能源安全、生态安全、水资源安全和粮食安全,甚至威胁到人类的生存。这一现象亦引发了国际社会对现有经济发展模式的反思,在此背景下,“低碳经济”(low-carbon economy)的概念应运而生,并越来越受到国际社会的重视。
“低碳经济”的概念最早由英国政府在2003年发表的《能源白皮书》中提出,题为“我们能源的未来:创建低碳经济”。《能源白皮书》指出,“低碳经济是通过更少的自然资源消耗和更少的环境污染,获得更多的经济产出;低碳经济是创造更高的生活标准和更好的生活质量的途径和机会,也为发展、应用和输出先进技术创造了机会,同时也能创造新的商机和更多的就业机会。” 低碳经济发展模式提出后,各国纷纷相应。学术界围绕低碳经济的研究也不断地发展和丰富。国外学者对低碳经济的研究起步较早,研究成果也颇为丰富。总结国外现有的研究成果,主要可以归纳为三个方面:一是低碳经济与经济增长,研究重点在碳排放的影响因素,碳排放与经济增长的关系及碳减排对行业发展的影响等;二是低碳经济实现的制度安排,研究主要集中对碳税(carbon tax)和碳交易(carbon trading)的讨论;三是不同国家发展低碳经济的进程。 1 低碳经济与经济增长
关注“低碳经济”的一个重要方面就是对碳排放量(carbon emission)的控制,碳排放量受到哪些因素的影响一直是学者们研究的一个热点。通过对现有文献的分析发现,碳排放量的影响因素不仅包括Kaya公式所揭示的人口、GDP和能源消耗[1],还包括国际贸易,两国的商品贸易为碳排放创造了一种转移机制。 1.1 人口规模、结构对碳排放量的影响
不言而喻,人口越多,碳排放量就越多。即便中国超过美国成为全球碳排放最多的国家,也不足为怪,因为中美人口相差4倍多。此外,人口结构对碳排放量也有影响。Salvador Enrique Puliafito,et al采用Lotka-Volterra模型对人口、GDP、能源消耗与碳排放量的相互关系的探析,Michael Dalton,et al采用PET模型(Population-Environment-Technology model)的研究,均验证了上述结论。随着世界人口转型,人口老龄化现象逐渐凸显,发达国家将在2020年前后进入老龄化社会,人口老龄化因素会降低碳排放量.这一效果与技术变革
的效果相当[2-3]。
1.2 GDP、能源消耗与碳排放量的因果关系
低碳经济不是贫困的经济,因此不能通过降低GDP实现碳减排。碳排放最主要的来源是能源的消耗,能源强度和碳强度是衡量能源消耗的两个重要指标。“能源强度”(Energy Intensity)是指单位GDP的能源用量。不同产业的能源强度不同,一般第二产业的能源强度最高,而第二产业中,重化工的能源强度又远高于一般制造业。能源强度还受到技术的影响,同一行业中技术水平低则能源强度高。因此降低能源强度,提高技术水平是减排的有效方向之一。而单位能源用量的碳排放量,则称为“碳强度”(Carbon Intensity)。能源种类不同,碳强度差异很大。化石能源中,煤的碳强度最高,石油次之,天然气较低。可再生能源中,生物质能有一定的碳强度,而水能、风能、太阳能、地热能、潮汐能等都是零碳能源。
学者也对GDP、能源消耗与碳排放量的关系进行了定量研究。Ramakrishnan Ramanathan采用DEA方法(Data Envelopment Analysis,数据包络分析法)同时分析了GDP、能源消耗、碳排放量之间的联系。他指出以往研究的缺陷是,只分别分析了GDP对碳排放量的影响或者能源消耗对碳排放量的影响,没有对三者的联系进行分析。在指标选取上,他以化石能源消耗释放的二氧化碳代表碳排放量,化石能源包括了石油、天然气和煤炭;以全球生产总值衡量经济增长;能源消耗中只选取了非化石能源消耗量,包括水利、核能和地热能,没有包括化石能源消耗量是为了避免与第一个指标的重复。在DEA分析效率指标构建中,将GDP和碳排放量作为产出,非化石能源消耗作为投入。结果显示效率指标在1980年时最高,接下来的7年急剧下降,随后呈现反复震荡下跌趋势,1996年开始回升。基于DEA分析的技术预测(technology forecasting)得到了碳排放量与能源消耗量的曲线图[4]。
Ugur Soytas,et al采用包含GDP、能源消耗、二氧化碳排放量、劳动力和
固定资本总额等变量的VAR模型研究了美国能源消耗、GDP与碳排放量之间的因果关系。研究发现碳排放量的格兰杰成因不是GDP增长,而是能源消耗。并提出碳减排政策的制定应该从降低能源强度角度考虑,还应该增加如风能、太阳能等清洁能源的使用,提高可再生能源的利用率[5]。后来,Ugur Soytas,et al对土耳其的实证研究也得到类似的结论[6]。
Xing-Ping Zhang,Xiao-Mei Cheng研究了中国能源消耗、碳排放量与经济增长之间的格兰杰因果关系及方向。他建立了一个包含GDP、能源消耗量、碳排放量、资本和城市人口指标的多元模型,以1960-2007年的实证结果显示,GDP对能源消耗量存在单向格兰杰成因,能源消耗量对碳排放量存在单向格兰杰成因,而碳排放量和能源消耗量都不是经济增长的格兰杰成因。这意味着,从长远来看,中国政府可以推行渐进的能源政策和碳减排政策,而不会妨碍经济增长[7]。
定量分析的结果表明,低碳经济是经济增长与化石能源消耗脱钩的经济。化石能源消耗是碳排放的主要来源,在低碳经济模式下,经济增长不依赖于化石能源的消耗。从长期来看,经济增长与碳排放量也不存在因果关系,而能源消耗是碳排放量的重要影响因素。因此碳减排政策应关注能源消耗:通过技术改革、产业结构升级,降低能源强度;增加清洁能源的使用和可再生能源的利用率,降低碳强度。
1.3 行业碳排放量存在差异
碳减排的重要措施是降低能源强度和碳强度,而由于行业差异以及不同行业使用能源的差异,不同行业的碳排放量相差很大。因此将行业分类,并研究其在低碳经济下的发展是一个不可忽视的问题。
T C Chang,S J Lin采用灰色关联分析(Grey Relation Analysis)测算了台湾34个行业产值与碳排放量的灰色关联系数、总能源使用量以及各种能源使用量与碳排放量的灰色关联系数。研究结果显示,在分辨系数取0.5的情况下,