牟天昊专用
动点问题专题训练
1、(09包头)如图,已知△ABC中,AB?AC?10厘米,BC?8厘米,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运B 动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
解:(1)①∵t?1秒, ∴BP?CQ?3?1?3厘米,
∵AB?10厘米,点D为AB的中点, ∴BD?5厘米.
又∵PC?BC?BP,BC?8厘米, ∴PC?8?3?5厘米, ∴PC?BD. 又∵AB?AC, ∴?B??C,
∴△BPD≌△CQP. ············································································· (4分) ②∵vP?vQ, ∴BP?CQ,
又∵△BPD≌△CQP,?B??C,则BP?PC?4,CQ?BD?5, ∴点P,点Q运动的时间t?∴vQ?D Q P C A BP4?秒, 33CQ515································································· (7分) ??厘米/秒. ·
44t3(2)设经过x秒后点P与点Q第一次相遇, 由题意,得解得x?15x?3x?2?10, 480秒. 3 1 / 22
牟天昊专用
80?3?80厘米. 3∵80?2?28?24,
∴点P共运动了
∴点P、点Q在AB边上相遇,
80秒点P与点Q第一次在边AB上相遇. ········································· (12分) 332、(09齐齐哈尔)直线y??x?6与坐标轴分别交于A、B两点,动点P、Q同
4∴经过
时从O点出发,同时到达A点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式;
48时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四5边形的第四个顶点M的坐标. y (3)当S?
解(1)A(8,0)B(0,6) ··············· 1分 (2)QOA?8,OB?6 ?AB?10
B P x 8Q点Q由O到A的时间是?8(秒)
16?10?点P的速度是 1分 ?2(单位/秒) ·
8O Q A 当P在线段OB上运动(或0≤t≤3)时,OQ?t,OP?2t
S?t2 ·········································································································· 1分
当P在线段BA上运动(或3?t≤8)时,OQ?t,AP?6?10?2t?16?2t, 如图,作PD?OA于点D,由
PDAP48?6t?,得PD?, ······························ 1分 BOAB51324?S?OQ?PD??t2?t ······································································· 1分
255(自变量取值范围写对给1分,否则不给分.)
(3)P?,? ···························································································· 1分
?824??55? 2 / 22
牟天昊专用
??824??1224??1224?I1?,?,M2??,?,M3?,?? ···················································· 3分
5??55??55??5
3(09深圳)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴
相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),
与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P
在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE= ∴PE=13CD=,PD=3, 2233. 2∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB,
∴
33AOPE4?,即=2, ABPB45PB 3 / 22
牟天昊专用
315, 2315, 2∴PB?∴PO?BO?PB?8?∴P(0,∴k?315?8), 2315?8. 2315-8), 2当圆心P在线段OB延长线上时,同理可得P(0,-∴k=-315-8, 2315315-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三22角形是正三角形.
∴当k=4(09哈尔滨) 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
4 / 22
牟天昊专用
解:
5 / 22
牟天昊专用
5(09河北)在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单
B 位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动
E 的时间是t秒(t>0). Q (1)当t = 2时,AP = ,点Q到AC的距
D 离是 ;
A C P (2)在点P从C向A运动的过程中,求△APQ
图16
的面积S与 B t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成 E 为直角梯形?若能,求t的值.若不能,请说明理由;
Q (4)当DE经过点C 时,请直接写出t的值. ..
D
8解:(1)1,;
5A 图4
B P
C (2)作QF⊥AC于点F,如图3, AQ = CP= t,∴AP?3?t. 由△AQF∽△ABC,BC?52?32?4, QFt4得?.∴QF?t.
455Q D A P E C ∴S?(3?t)?t, 即S??t2?t.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形. 此时∠AQP=90°. AQAP由△APQ ∽△ABC,得, ?ACAB25651245图5
B Q G D A P C(E) B G 图6 Q 即?t33?t9. 解得t?. 58②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°. 由△AQP ∽△ABC,得
AQAP, ?ABACA P D C(E) t3?t15即?. 解得t?. 538图7
6 / 22
牟天昊专用
545或t?. 214(4)t?①点P由C向A运动,DE经过点C.
连接QC,作QG⊥BC于点G,如图6.
34PC?t,QC2?QG2?CG2?[(5?t)]2?[4?(5?t)]2.
55由PC2?QC2,得t2?[(5?t)]2?[4?(5?t)]2,解得t?②点P由A向C运动,DE经过点C,如图7.
34(6?t)2?[(5?t)]2?[4?(5?t)]2,t?45】
5514
35455. 2
6(09河南))如图,在Rt△ABC中,?ACB?90°,?B?60°,BC?2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点A E,设直线l的旋转角为?. (1)①当?? 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当?? 度时,四边形EDBC是直角梯形,此时AD的长为 ;
(2)当??90°时,判断四边形EDBC是否为菱形,并说A 明理由.
E O ? D l C B C O B (备用图)
解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=90时,四边形EDBC是菱形. ∵∠α=∠ACB=90,∴BC//ED.
∵CE//AB, ∴四边形EDBC是平行四边形. ……………………6分 在Rt△ABC中,∠ACB=90,∠B=60,BC=2,
∴∠A=30.
0
0
0
0
0
∴AB=4,AC=23. ∴AO=
1AC=3 . ……………………8分 20
在Rt△AOD中,∠A=30,∴AD=2. ∴BD=2.
7 / 22
牟天昊专用
∴BD=BC.
又∵四边形EDBC是平行四边形,
∴四边形EDBC是菱形 ……………………10分
7(09济南)如图,在梯形ABCD中,
AD∥BC,AD?3,DC?5,AB?42,∠B?45?.动点M从B点出发沿线段
动点NBC以每秒2个单位长度的速度向终点C运动;A D 同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
N (1)求BC的长.
B (2)当MN∥AB时,求t的值. C M (3)试探究:t为何值时,△MNC为等腰三角形.
解:(1)如图①,过A、D分别作AK?BC于K,DH?BC于H,则四边形ADHK是矩形
∴KH?AD?3 ················································································ 1分 .sin45??42.在Rt△ABK中,AK?ABg2?4 2BK?ABgcos45??42g2?4 ·························································· 2分 2在Rt△CDH中,由勾股定理得,HC?52?42?3
∴BC?BK?KH?HC?4?3?3?10 ················································· 3分 A D A D
N
C B C B K H G M
(图①) (图②)
(2)如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形 ∵MN∥AB ∴MN∥DG ∴BG?AD?3 ∴GC?10?3?7 ············································································· 4分 由题意知,当M、N运动到t秒时,CN?t,CM?10?2t. ∵DG∥MN
∴∠NMC?∠DGC 又∠C?∠C
∴△MNC∽△GDC
8 / 22
牟天昊专用
CNCM ··················································································· 5分 ?CDCGt10?2t即? 5750解得,t? ···················································································· 6分
17∴
(3)分三种情况讨论:
①当NC?MC时,如图③,即t?10?2t ∴t?10 ·························································································· 7分 3D N
A A D
N
B B C
M
(图④) (图③)
②当MN?NC时,如图④,过N作NE?MC于E 解法一:
由等腰三角形三线合一性质得EC?M H E
C
11MC??10?2t??5?t 22EC5?t在Rt△CEN中,cosc? ?NCtCH3又在Rt△DHC中,cosc??
CD55?t3∴?
t525解得t? ······················································································· 8分
8解法二:
∵∠C?∠C,?DHC??NEC?90? ∴△NEC∽△DHC
NCEC ?DCHCt5?t即? 5325∴t? ·························································································· 8分
811③当MN?MC时,如图⑤,过M作MF?CN于F点.FC?NC?t
22∴
解法一:(方法同②中解法一)
9 / 22
牟天昊专用
1tFC3cosC??2?
MC10?2t560解得t?
17解法二:
∵∠C?∠C,?MFC??DHC?90? ∴△MFC∽△DHC ∴
B
A D
N F
H M
C
(图⑤)
FCMC ?HCDC1t10?2t2即 ?3560∴t?
17256010综上所述,当t?、t?或t?时,△MNC为等腰三角形 ··············· 9分
8173
8(09江西)如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB?4,BC?6,∠B?60?. (1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM?EF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EP?x. ①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由; ②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
A E B
图1 A E B
D F C
B
A E P N
D F C B
A E P D N F
C
M D F C
图4(备用)
图2
D
M
图3
(第25题) A
E B
图5(备用)
F C
10 / 22
牟天昊专用
解(1)如图1,过点E作EG?BC于点G. ······················ 1分
∵E为AB的中点,
1∴BE?AB?2.
2在Rt△EBG中,∠B?60?,∴∠BEG?30?. ············ 2分
1∴BG?BE?1 ,EG?22?12?3.2即点E到BC的距离为3. ····································· 3分
A E B
D F C
图1
G
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.
同理MN?AB?4. ·················································································· 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. N
A D ∴PH?13PM?. 22B
E P H F C
图2
3∴MH?PMg cos30??.235则NH?MN?MH?4??.
222G M ?5??3?22在Rt△PNH中,PN?NH?PH????? ?7.???22????∴△PMN的周长=PM?PN?MN?3?7?4. ······································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM?PN时,如图3,作PR?MN于R,则MR?NR.
23 .2∴MN?2MR?3 ··················································································· 7分 .∵△MNC是等边三角形,∴MC?MN?3 .此时,x?EP?GM?BC?BG?MC?6?1?3?2. ··································· 8分
类似①,MR?A E B
P R
G
M
图3
C
B
G
图4
D N F
A E P
D F N C
B
A E D F(P) N C
M G
图5
M
11 / 22
牟天昊专用
当MP?MN时,如图4,这时MC?MN?MP?3.
此时,x?EP?GM?6?1?3?5?3.
当NP?NM时,如图5,∠NPM?∠PMN?30?.
则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.
因此点P与F重合,△PMC为直角三角形. ∴MC?PMg tan30??1.此时,x?EP?GM?6?1?1?4.
综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ···················· 10分
??9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
解:(1)Q(1,0) ······················································································· 1分 点P运动速度每秒钟1个单位长度. ·········································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.
y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.
DCAMFONQP
12 / 22H BEGx牟天昊专用
∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.
∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴
APAMMPtAMMP??. ??. ?ABAFBF10683434 ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.
5555设△OPQ的面积为S(平方单位)
13473∴S??(10?t)(1?t)?5?t?t2(0≤t≤10) ················································· 5分
251010说明:未注明自变量的取值范围不扣分.
473<0 ∴当t??时, △OPQ的面积最大. ························· 6分 ?36102?(?)104710 ∵a?? 此时P的坐标为(
9453,) . ····································································· 7分 15105295(4) 当 t?或t?时, OP与PQ相等. ················································· 9分
31310(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90o,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
B E C 图1
G
B
E C 图2 A
D
F G
B 图3
C E G
F A
D
13 / 22
牟天昊专用
解:(1)正确.····················································· (1分) 证明:在AB上取一点M,使AM?EC,连接ME. (2分)
D A
?BM?BE.??BME?45°,??AME?135°.
F M QCF是外角平分线,
??DCF?45°,
B E C G ??ECF?135°.
??AME??ECF.
Q?AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF.
. ··································································· (5分) ?△AME≌△BCF(ASA)
························································································ (6分) ?AE?EF. ·
(2)正确. ····················································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ··································· (8分)
N F ?BN?BE. D A ??N??PCE?45°. Q四边形ABCD是正方形, ?AD∥BE.
B C E G
??DAE??BEA. ??NAE??CEF.
. ································································· (10分) ?△ANE≌△ECF(ASA)
······················································································ (11分) ?AE?EF. ·
11(09天津)已知一个直角三角形纸片OAB,其中
?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y
B
x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;
B y x O A
(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y B
14 / 22
x O A 牟天昊专用
解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.
在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m2?22,解得m?22223. 2?3??点C的坐标为?0,?. ··················································································· 4分
2??(Ⅱ)如图②,折叠后点B落在OA边上的点为B?,
则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,
在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.
222??4?y??y2?x2,
12··························································································· 6分 x?2 ·
8由点B?在边OA上,有0≤x≤2,
1? 解析式y??x2?2?0≤x≤2?为所求.
8即y??2? Q当0≤x≤2时,y随x的增大而减小,
3···································································· 7分 ?y的取值范围为≤y≤2. ·
2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又Q?CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC?有,得OC?2OB??. ·································································· 9分 OAOB在Rt△B??OC中,
设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8 15 / 22
牟天昊专用
解得x0??8?45.Qx0?0,?x0??8?45. ?点C的坐标为0,85?16. ··································································· 10分
??12(09太原)问题解决 F
M D 如图(1),将正方形纸片ABCD折叠,使点B落在CD边A 上一点E(不与点C,D重合),压平后得到折痕MN.当CE1AME 的值. ?时,求
CD2BN B C 方法指导: N
为了求得AM的值,可先求BN、AM的长,不妨设:AB=2 图(1)
BN
类比归纳
CE1AMCE1AM在图(1)中,若则的值等于 ;若则的?,?,CD3BNCD4BNCE1AM值等于 ;若,则的值等于 .(用含?(n为整数)
CDnBNn的式子表示) 联系拓广 如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,DAB1CE1AM重合),压平后得到折痕MN,设则的值等??m?1?,?,BCmCDnBN于 .(用含m,n的式子表示) F
M D A
E
B C N
图(2)
解:方法一:如图(1-1),连接BM,EM,BE.
F M A D
B
N )图(1-1
C E
16 / 22
牟天昊专用
由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE.∴BM?EM,BN?EN. ···································· 1分 ∵四边形ABCD是正方形,∴?A??D??C?90°,AB?BC?CD?DA?2. ∵
CE1设BN?x,则NE?x, ?,?CE?DE?1.NC?2?x.CD2222 在Rt△CNE中,NE?CN?CE.
55,即BN?. ········································· 3分 44 在Rt△ABM和在Rt△DEM中,
AM2?AB2?BM2, DM2?DE2?EM2,
?AM2?AB2?DM2?DE2. ····························································· 5分
2222 设AM?y,则DM?2?y,∴y?2??2?y??1.
11 解得y?,即AM?. ····································································· 6分
44AM1 ∴ ····················································································· 7分 ?.BN55 方法二:同方法一,BN?. ································································ 3分
4 如图(1-2),过点N做NG∥CD,交AD于点G,连接BE.
∴x2??2?x??12.解得x?2
F G M A D
E
B C N
图(1-2)
∵AD∥BC,∴四边形GDCN是平行四边形. ∴NG?CD?BC.
同理,四边形ABNG也是平行四边形.∴AG?BN?. ∵MN?BE, ??EBC??BNM?90°. QNG?BC, ??MNG??BNM?90°,??EBC??MNG. 在△BCE与△NGM中
54??EBC??MNG,? ?BC?NG,∴△BCE≌△NGM,EC?MG. ························· 5分
??C??NGM?90°.? 17 / 22
牟天昊专用
∵AM?AG?MG,AM=∴
类比归纳
51 ····················································· 6分 ?1?.44AM1 ··················································································· 7分 ?.BN52?n?1? ·249(或);; ································································ 10分 251017n?1联系拓广
n2m2?2n?1 ······················································································ 12分 22nm?1
1.(2008,河北)如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直
线L2经过点A,B,直线L1,L2交于点C.
(1)求点D的坐标; (2)求直线L2的解析表达式; (3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.
2.(2005,长春市)如图a所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=
3x,AD=8.矩形ABCD沿DB方向以每秒1?单位长度运动,4同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14s. (
1
)
求
矩
形
ABCD
的
周
18 / 22
牟天昊专用
长.
(2)如图b所示,图形运动到第5s时,求点P的坐标; (3)设矩形运动的时间为t.当0≤t≤6时,点P所经过的路线是一条线段,?请求出线段所在直线的函数关系式; (4)当点P在线段AB或BC上运动时,过点P作x轴,y轴的垂线,垂足分别为E,F,则矩形PEOF是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.
3.(08金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD。(1)求直线AB的解析式;(2)当点P运动到点(3,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使ΔOPD的面积等于
3,若存在,请求出符合条件的点P的坐标;若4不存在,请说明理由。
4.已知直线y=k x +b与x轴交于M,与y轴交于N(N点在M点上方),在直线上存在一点P(m,n)(m>0),连结OP,作PA垂直于OP交x轴于A(a,0)(a>0) (1)kb 0(填“>”、”<”或“=”);(1分)
3
(2)若y=1-x且n为20以内整数,y1=2/x1,y2=x2/2,当x1=x2=n时,(y1+y2)n/2的最小值;(5分) 19 / 22
牟天昊专用
5.如图,直线y?kx?6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。 (1)求k的值; (2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; E(3)探究:当点P运动到什么位置时,△OPA的面积为27A8,并说明理由。
1.(1)由y=-3x+3知,令y=0,得-3x+3=0, ∴x=1.∴D(1,0).
(2)设直线L2的解析式表达式为y=kx+b,
由图像知:直线L2过点A(4,0)和点B(3,-
32), ?4k?b?0,?3 ∴??,∴?k?, ∴直线3??3k?b??3?2?2L的解析表达式为y=x-6. ?b??6.2?y??3x?3, (3)由???x?2,??y?32x?6. 解得? ?y??3. ∴C(2,-3). ∵AD=3,∴S1△=2×3×│-3│=92. (4)P(6,3). 2.(1)AD=8,B点在y=
34x上,则y=6,B点坐标为(8,6),AB=6,矩形的周长为28. (2)由(1)可知AB+BC=14,P点走过AB,BC的时间为14s,
因此点P的速度为每秒1?个单位.
∵矩形沿DB方向以每秒1个单位长运动,出发5s后,OD=5,
此时D点坐标为(4,3)
同时,点P沿AB方向运动了5个单位,则点P坐标为(12,8).
20 / 22
yFox牟天昊专用
(3)点P运动前的位置为(8,0),5s后运动到(12,8)已知它运动路线是一条线段,设线段所在直线为y=kx+b. ∴??8k?b?0,k?b?8. 解得??k?2 直线解析式为y=2x-16.
?12?b??16. (4)方法一:
①当点P在AB边运动时,即0≤t≤6.
点D的坐标为(
45t,35t). ∴点P的坐标为(8+485t,5t).
8 若PEBAtOE?DA,则5=6,解得t=6.8?4 5t8 当t=6时,点P与点B重合,此时△PEO与△BAD相形.
8 若PEDA5tOE?BA,则88?4=,解得t=20. t65 因为20>6,所以此时点P不在AB边上,舍去. ②当点P在BC边运动时,即6≤t≤14.
点D的坐标为(45t,35t). ∴点P的坐标为(14-15t,35t+6).
3 若PEBAt?6OE?DA,则5=6,解得t=6. 14?15t8 此情况①已讨论.
3 若PEt?6OE?DABA,则5819014?1=,解得t=.
t6135 因为19013>14,此时点P不在BC边上,舍去.
综上,当t=6时,点P到达点B时,此时△PEO与△BAD相形. 方法二:
21 / 22
牟天昊专用
当点P在AB上没有到达点B时,
4PEBE3PE=,更不能等于. ?3OEOE4OE 则点P在AB上没到达点B时,两个三角形不能构成相似形. 当点P到达点B时,△PEO与△BAD相似,此时t=6. 当点P越过点B在BC上时,
PE3>. OE4 若
PE413=时,由点P在BC上时,坐标为(14-t,t+6),(6≤t≤14). OE3553t?64190190 5=,解得t=,但>14.
13131314?t5 因此当P在BC上(不包括点B)时,△PEO与△BAD不相似. 综上所述,当t=6时,点P到达点B,△PEO与△BAD是相似形. 4.解:(1)kb < 0
(2)y=1-x,那么M(1,0),N(0,1)
34
y1+y2= 2/n+n/2=(4+n)/2n
44
(y1+y2)n/2=(4+n)/4=1+ n/4
4
nmin=1
(y1+y2)n/2min=5/4
22 / 22
相关推荐: