第一范文网 - 专业文章范例文档资料分享平台

2020版新高考二轮复习理科数学专题强化训练(二十二) 选修4-4 坐标系与参数方程Word版含解析

来源:用户分享 时间:2025/8/26 10:45:09 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

专题强化训练(二十二) 选修4-4 坐标系与参数方程 1.[2019·济南模拟]在直角坐标系xOy中,曲线C的参数方程为

??x=3cosθ,?(θ为参数),以坐标原点O为极点,x轴正半轴为极??y=1+3sinθ

π??

轴建立极坐标系,直线l的极坐标方程为ρsin?θ+6?=23.

??

(1)求曲线C的普通方程和直线l的直角坐标方程;

π

(2)射线OP的极坐标方程为θ=6,若射线OP与曲线C的交点为A,与直线l的交点为B,求线段AB的长.

???x=3cosθ,?x=3cosθ,

解:(1)由?可得?

???y=1+3sinθ,?y-1=3sinθ,

所以x2+(y-1)2=3cos2θ+3sin2θ=3, 所以曲线C的普通方程为x2+(y-1)2=3.

?3?π??1

由ρsin?θ+6?=23,可得ρ?sinθ+cosθ?=23,

2???2?

31

所以2ρsinθ+2ρcosθ-23=0,

所以直线l的直角坐标方程为x+3y-43=0. (2)解法一:曲线C的方程可化为x2+y2-2y-2=0, 所以曲线C的极坐标方程为ρ2-2ρsinθ-2=0. π?π???

由题意设A?ρ1,6?,B?ρ2,6?,

????

π

将θ=6代入ρ2-2ρsinθ-2=0,得ρ21-ρ1-2=0, 所以ρ1=2或ρ1=-1(舍去).

π??π

将θ=6代入ρsin?θ+6?=23,得ρ2=4,

??所以|AB|=|ρ1-ρ2|=2.

π

解法二:因为射线OP的极坐标方程为θ=6,

3

所以射线OP的直角坐标方程为y=3x(x≥0). 由?3y=?3x?x>0?

22x+?y-1?=3,?

解得A(3,1).

?x+3y-43=0,由?3

y=?3x?x>0?

解得B(23,2),

所以|AB|=?23-3?2+?2-1?2=2.

2.[2019·武汉4月调研]在直角坐标系xOy中,以坐标原点O为π??2

??θ+极点,x轴的非负半轴为极轴建立极坐标系,曲线C1:ρsin4?=2,?1

C2:ρ=.

3-4sin2θ

2

(1)求曲线C1,C2的直角坐标方程;

(2)曲线C1和C2的交点为M,N,求以MN为直径的圆与y轴的交点坐标.

π??2??θ+解:(1)由ρsin4?=2得 ?ππ??2

??ρsinθcos4+cosθsin4=2, ??

??ρsinθ=y,将?代入上式得x+y=1, ?ρcosθ=x?

即C1的直角坐标方程为x+y-1=0, 122同理由ρ=2可得3x-y=1, 3-4sinθ

2

∴C2的直角坐标方程为3x2-y2=1

(2)先求以MN为直径的圆,设M(x1,y1),N(x2,y2),

22

??3x-y=1,由?得3x2-(1-x)2=1, ??x+y=1

??x1+x2=-1,

即x+x-1=0,∴?

?x1x2=-1,?

2

?13?

则MN的中点坐标为?-2,2?,

??

1-4×?-1?

∴|MN|=1+?-1?|x1-x2|=2×=10. 1

2∴以MN为直径的圆的方程为 1?2?3?2?10?2?

?x+?+?y-?=??2??2??2?, ?

3?9?1?3?10

令x=0,得4+?y-2?2=4,即?y-2?2=4,∴y=0或y=3,

?

?

?

?

∴以MN为直径的圆与y轴的交点的坐标为(0,0)或(0,3). 3.[2019·合肥质检二]在直角坐标系xOy中,曲线C1的参数方程

??x=2cosα,为?(α为参数).以原点O为极点,x轴正半轴为极轴建?y=sinα?

立极坐标系,曲线C2的极坐标方程为ρ2=4ρsinθ-3.

(1)写出曲线C1的普通方程和C2的直角坐标方程;

(2)若P,Q分别为曲线C1,C2上的动点,求|PQ|的最大值. 解:(1)由曲线C1的参数方程消去参数得,曲线C1的普通方程为x22

4+y=1.

将x2+y2=ρ2,y=ρsinθ代入曲线C2的极坐标方程得,曲线C2

的直角坐标方程为x2+y2=4y-3,

即x2+(y-2)2=1.

(2)由(1)知曲线C2是以C(0,2)为圆心,1为半径的圆. 设P点的坐标为(2cosα,sinα), 则

|PQ|≤|PC|

1

4cos2α+?sinα-2?2+

1

-3sin2α-4sina+8+1,

2221

当sinα=-3时,|PQ|max=3+1.

4.[2019·郑州质量预测二]在平面直角坐标系xOy中,以O为极

2020版新高考二轮复习理科数学专题强化训练(二十二) 选修4-4 坐标系与参数方程Word版含解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4aisx1f2820wacw0f2p46m3qp9xkwe00yq6_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top