2、运用合理度层次模型时,权重的判断具有主观性,容易产生误差;
3、分析问题有时过于人为简单性,有些模型使用不到位,可能造成数据的某些误差没有发现,遗漏某些细节。
八、模型推广
模糊综合评价法用于在模糊环境下,对受多种因素影响的事物进行综合的决策。在本题中,我们运用该方法对彩票问题进行研究,将模糊的因子数据化,从而得到相应的满意度评价函数,进而对彩票的各个方案进行分析和评价。此方法不仅适用于本题,还适用于企业融资、经济效应、绩效考核及选址等模糊性问题。
本题所建立的模型可以推广到所有彩票购买机制中,也可以推广到一些投资问题上。其实,彩票本身也可以认为是一种投资,我们可以将这个模型稍稍改变推广到部分投资问题中,可以减少投资风险。
九、参考文献
[1]姜启源等编,数学模型(第三版),高等教育出版社,2003年08月; [2]严士健, 王隽骧, 刘秀芳著,概率论基础,2009年8月;
[3]孙宏才,田平等著,网络层次分析与决策科学 ,国防工业出版社,2011年01月; [4]张韵华,王新茂,Mathematica7实用教程,中国科学技术大学出版社,2011年1月 [5]张尧庭,陈慧玉编著,效用函数及优化,科学出版社,2000年
12
十、附录
附录一: Mathematica概率计算:
(*方案5*)m= 29;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案6*)m= 29 ;n= 6 ; a=1/Binomial[m,n+1]//N;
b=Binomial[m-n-1,1]/Binomial[m,n+1]//N;
c=Binomial[m-n-1,1]*Binomial[n,n-1]/Binomial[m,n+1]//N; d=Binomial[m-n-1,2]*Binomial[n,n-1]/Binomial[m,n+1]//N; e=Binomial[m-n-1,2]*Binomial[n,n-2]/Binomial[m,n+1]//N; f=Binomial[m-n-1,3]*Binomial[n,n-2]/Binomial[m,n+1]//N; g=Binomial[m-n-1,3]*Binomial[n,n-3]/Binomial[m,n+1]//N; h={a,b,c,d,e,f,g}
(*方案7~9*)m= 30;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N;
13
f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案10~11*)m= 31;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案12~14*)m= 32;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案15~16*)m= 33;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案17~18*)m= 34;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案19~22*)m= 35;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N;
14
e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g} (*方案23*)m=35;n=7;
a=Binomial[n,n]*Binomial[m-n,0]/Binomial[m,n]//N; b=Binomial[n,n-1]*Binomial[m-n,1]/Binomial[m,n]//N; c=Binomial[n,n-2]*Binomial[m-n,2]/Binomial[m,n]//N; d=Binomial[n,n-3]*Binomial[m-n,3]/Binomial[m,n]//N; e=Binomial[n,n-4]*Binomial[m-n,4]/Binomial[m,n]//N; h={a,b,c,d,e}
(*方案24~25*)m= 36 ;n= 6 ; a=1/Binomial[m,n+1]//N;
b=Binomial[m-n-1,1]/Binomial[m,n+1]//N;
c=Binomial[m-n-1,1]*Binomial[n,n-1]/Binomial[m,n+1]//N; d=Binomial[m-n-1,2]*Binomial[n,n-1]/Binomial[m,n+1]//N; e=Binomial[m-n-1,2]*Binomial[n,n-2]/Binomial[m,n+1]//N; f=Binomial[m-n-1,3]*Binomial[n,n-2]/Binomial[m,n+1]//N; g=Binomial[m-n-1,3]*Binomial[n,n-3]/Binomial[m,n+1]//N; h={a,b,c,d,e,f,g}
(*方案26*)m= 36;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案27*)m= 37;n= 7 ; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N; f=Binomial[n,n-3]*Binomial[m-n-1,2]/Binomial[m,n]//N; g=Binomial[n,n-3]*Binomial[m-n-1,3]/Binomial[m,n]//N; h={a,b,c,d,e,f,g}
(*方案28*)m= 40;n= 6; a=1/Binomial[m,n]//N;
b=Binomial[n,n-1]/Binomial[m,n]//N;
c=Binomial[n,n-1]*Binomial[m-n-1,1]/Binomial[m,n]//N; d=Binomial[n,n-2]*Binomial[m-n-1,1]/Binomial[m,n]//N; e=Binomial[n,n-2]*Binomial[m-n-1,2]/Binomial[m,n]//N;
15
相关推荐: