图8-1垂直与水平投影
Step9 计算车牌垂直投影,去掉车牌垂直边框,获取车牌及字符平均宽度。
1)通过以上水平投影、垂直投影分析计算,获得了车牌字符高度、字符顶行与尾行、字符宽度、每个字符的中心位置,为提取分割字符具备了条件。
Step10字符分割及输出结果。
进行车牌识别前需要使用样本对神经网络进行训练,然后使用训练好的网络对车牌进行识别。其具体流程为:使用汉字、字母、字母数字、数字四个样本分别对四个子网络进行训练,得到相应的节点数和权值。对已经定位好的车牌进行图像预处理,逐个的特征提取,然后从相应的文件中读取相应的节点数和权值,把车牌字符分别送入相应的网络进行识别,输出识别结果。
结果图
显示结果为:除汉字外的字符BB88888 。
五、系统设计总结与分析
实验对车牌识别系统的软件部分进行了研究,分别从图像预处理、车牌定位、字符分割以及字符识别等方面进行了系统的分析。整理和总结了国内外在车牌定位、分割、字符识别方面的研究成果和发展方向,系统介绍了我国车牌的固有特征,以及车牌识别的特点。在车牌定位我们采用基于灰度跳变的定位方法,采用先对图像进行预处理,再进行二值化操作的方法。实验表明本方法既保留了车牌区域的信息,又减少了噪声的干扰,从而简化了二值化处理过程,提高了后续处理的速度。基于彩色分量的定位方法,运用基于蓝色像素点统计特性的方法对车牌是蓝色的车牌进行定位,实验表明,用该方法实现的车牌定位准确率较高。本设计用MATLAB编程运行结果可以得出,本设计采用的图像预处理、CANNY边缘检测、开闭运算子[5,19]、车牌长宽比特征识别等对车牌的定位都是非常有效的,而本设计提出的二次水平投影分析和阈值技术有效检测了车牌图像的上下左右边框、旋转角度,准确实现的车牌字符的分割,对多个车牌进行实验,均有很高的正确率。本设计虽然只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0),而车牌字符的分割算法仍然行之有效。在车牌识别的过程中数字库的建立很重要,只有数字库的准确才能保证检测出来的数据正确。切割出来的数据要与数据库的数据作比较,所以数据库的数据尤为重要。
六、设计体会
经过近一周的奋战我的课程设计终于完成了。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。以前老是觉得自己什么东西都不会,什么东西都不懂,而且又急于求成,结果造成什么都没学好,还是什么都不会。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质,特别是对于我,基础比较差,一定不能太过于心急,要静下心来慢慢的研究。在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学,我也明白学习不是埋头苦读书,而是合理的利用资源,从同学那里,老师那里得到的有用的想法和信息,特别是网上有很多很好的资料,对自己的自学能力也是很好的提高。
七、参考文献
[1](希)西奥多里德斯等著.模式识别(第三版)[M].电子工业出版社,2006年12月。1-6
[2]孙增祈. 智能控制理论与技术[M]. 北京:清华大学出版社,1999
[3]钟珞,潘昊,何平.模式识别[M]书.武汉:武汉大学出版社,2006年9月第1版:P1-P5,P62-P64
[4]叶晨洲等. 车辆牌照字符识别系统[J]. 计算机系统应用,1999(5): 10-13 [5]袁志伟,潘晓露. 车辆牌照定位的算法研究[J]. 昆明理工大学学报,2001,26(2): 56-60
[6]冈萨雷斯. 数字图像处理(第二版)[M]. 北京:电子工业出版社,2007
相关推荐: