第一范文网 - 专业文章范例文档资料分享平台

需求预测方法

来源:用户分享 时间:2025/5/18 8:40:36 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

(a) 一元回归预测模型

一元回归预测模型是指通过采用最小二乘法,寻找唯一自变量与因变量之间经验公式的预测方法。其首先需要确定唯一自变量,即找出影响预测目标的关键因素,然后通过最小二乘法求出回归方程系数,最后还需进行显著性检验,即对回归方程中自变量与因变量的密切程度进行检验。

(b)多元回归预测模型

一元回归预测模型是影响因素通过关键影响因素作为唯一自变量来解释因变量的变化的预测方法,但在实际情况中,致使因变量变化的因素可能涉及多个,这就需要引入多元回归预测模型来完成预测的实现了,通过引用若干个影响因子作为自变量来解释因变量的变化趋势。虽然,多元回归的原理与一元回归模型没有区别,但是在计算上却更为复杂,不仅需要考虑所有自变量与因变量之间的相关性检验,还需要研究自相关、偏相关、多变量共相关等问题。 ②经济计量法

经济计量法是经济分析与数学方法相结合的一种预测方法。

通常将描述预测对象有关主要变量相互关系的一组联立方程式称为经济计量模型。 特点:经济系统,而不是单个经济活动;相互依存、互为因果,而不是单向因果关系; 必须用一组方程才能描述清楚。 经济计量模型的方程形式:

单方程计量经济学模型,是用单一方程描述某一经济变量与影响该变量变化的诸因素之间的数量关系。它适用于单一经济现象的研究,揭示其中的单向因果关系。

联立方程模型则用多个方程描述经济系统中诸因素之间的数量关系。它适用于复杂经济现象的研究,在复杂的经济现象中,诸因素之间是相互依存、互为因果的。

单一方程式:例如:Y=X1+X2+X3 联立方程式:例如:Y1=X1;Y2=Y1+X2+X3;Y3=Y2+X2 ③投入产出分析法

投入产出分析法是反映经济系统各部分(如各部门、行业、产品)之间的投入与产出间的数量依存关系,并用于经济分析、政策模拟、经济预测、计划制定和经济控制等的数学分析方法。它是经济学与数学相结合的产物,属交叉科学。

在收集资料确定本期企业投入产出平衡表基础上,可以计算出各种消耗系数。假设企业设备和技术条件不变的条件下,就可以根据投入产出表建立的综合平衡模型进行预测应用,为计划管理、生产安排提供信息依据。

常见的有以下两种应用 :

资料

a)已知计划期内各种自产产品总产量列向量X,求最终产品量列向量Y,以及为确保计划完成所必须准备的各种外购资源消耗总量的矩阵H。

b)已知计划期内最终产品计划任务矩阵Y,计算计划期内各产品的总产量列向量X,以及确保计划完成所必须提供的各种外购资源H矩阵。 ④灰色预测模型

定义:灰色系统是指相对于一定的认识层次,系统内部的信息部分已知,部分未知,即信息不完全,半开放半封闭的。

灰色预测是对灰色系统进行的预测,其特点是预测模型不是唯一的;一般预测到一个区间,而不是一个点;预测区间的大小与预测精度成反比,而与预测成功率成正比。

通常灰色预测所用的模型为GM(1,1),该模型基于随机的原始时间序列,经累加生成新的时间序列,其中所呈现的规律用一阶线性微分方程的解来逼近,从而得到预测方程。 适用于:中长期预测。

应用:在预测应用上,如气象预报、地震预报、病虫害预报等,国内学者做出了许多有益的研究。

优势:所需样本少,样本不需要有规律性分布,更能动态地反映系统最新的特征,这实际上是一种动态预测模型。预测准确度高。 (3)支持向量机预测模型

支持向量机(SVM)方法是一种小样本的机器学习算法,其是在统计学习理论以及结构风险最小原则的基础上探讨所得的一种算法。通过对有限样本信息的分析研究,在模型复杂性(针对特定训练样本的学习精度)以及学习能力(准确识别样本的能力)之间寻求一个最佳平衡点,以获得最佳的推广能力。其核心思想是通过非线性变换将输入空间变换到一个高维空间,然后在新空间中求取最好的线性分类面,非线性变换的完成主要是依靠准确定义合适的内积函数,其最优分离超平面,如图2所示。

资料

图2:最优分离超平面

支持向量机算法优点较多,包括计算便捷、通用性强等。但其也存在一定的缺陷,即无法对大规模训练样本实施运算,因为支持向量机算法是通过二次规划来进行求解的,二次规划求解过程中要涉及多阶矩阵的计算问题,当阶数过大的条件下,将会在很大程度上损耗计算机的存储空间且增加机器的运算时间。 (4)BP神经网络模型

BP神经网络模型 ,是目前神经网络学习模型中最具代表性、应用最普遍的模型。BP神经网络架构是由数层互相连结的神经元组成,通常包含了输入层、输出层及若干隐藏层,各层包含了若干神经元。

神经网络便于依照学习法则,透过训练以调整连结链加权值的方式来完成目标的收敛。所得的神经网络构架结构基本形式.BP神经网络的神经采用的传递函数一般都是Sigmoid(S壮弯曲)型可微函数,是严格的递增函数,在线性和非线性之间显现出较好的平衡,所以可实现输入和输出间的任意非线性映射,适用于中长期的预测;优点是逼近效果好,计算速度快,不需要建立数学模型,精度高;理论依据坚实,推导过程严谨,所得公式对称优美,具有强非线性拟合能力。缺点是无法表达和分析被预测系统的输入和输出间的关系,预测人员无法参与预测过程;收敛速度慢,难以处理海量数据,得到的网络容错能力差,算法不完备(易陷入局部极小)。

三、新产品市场需求预测模型 巴斯模型

资料

巴斯模型基础假设及适用条件

1. 巴斯模型假设:新产品在市场上扩散速度会受到两种方式的影响:一种是大众传播

媒介,另一种是口碑传播。

2. 巴斯模型的适用条件:(1)企业已经引入了新产品或者新技术,并且已经观察到它

最初几个时期的销售情况。(2)企业还没有引入该产品或者新技术,但是该产品或者技术在某些方面同已有一些销售历史的某种现有产品或技术很相似。

巴斯模型有几个关键的假设条件,巴斯模型最重要的假设条件极其可能的扩展如下: (1)市场潜量保持恒定。

(2)支持新产品的营销策略不影响新产品的采用过程。

(3)消费者决策过程是二元的(只有 “接受”和“不接受”两种答案)。 (4)q的值在新产品的整个生命周期里保持固定不变。 (5)模仿常具有积极作用。

(6)创新产品的采用不受其他创新是否被采用的影响。 (7)该创新产品不存在重复购买或者替代购买。

资料

搜索更多关于: 需求预测方法 的文档
需求预测方法.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4b0fk3ybwz5136q5t3t485bn78arf200cmx_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top