∴ ?DAC??DCA. 又 ∵OC?OA, ∴?OAC??OCA.
∵ ?OAC??DAC??PAB?90?, ∴ ?OCA??DCA??OCD?90?. 即 OC?CD.
∴ 直线CD是⊙O的切线. ..............................8分
(2010山西22.(本题8分)如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过
点D,E是⊙O上一点,且∠AED=45o.
(1)试判断CD与⊙O的关系,并说明理由.
(2)若⊙O的半径为3cm,AE=5 cm.求∠ADE的正弦值.
D A B E (第22题)
C
O
1.(2010宁德).如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A的 半径为1,⊙B的半径为2,将⊙A由图示位置向右平移1个单位长后, ⊙A与静止的⊙B的位置关系是( ).D
A.内含 B.内切 C.相交 D.外切
A B 第9题图
2.(2010黄冈)6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD=AB·AE,求证:DE是⊙O的切线.
2
第20题图
证明:连结DC,DO并延长交⊙O于F,连结AF.∵AD2=AB·AE,∠BAD=∠DAE,∴△BAD∽△DAE,∴∠ADB=∠E. 又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CDF=∠DAF=90°,故DE是⊙O的切线
1.(2010山东济南)
如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0).
⑴求线段AD所在直线的函数表达式.
⑵动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?
y
C D
P 20B A x
第22题图
答案:1 解:⑴∵点A的坐标为(-2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA·tan60°=23,
∴点D的坐标为(0,23), ················································ 1分 设直线AD的函数表达式为y?kx?b,
????2k?b?0?k?3,解得, ??b?23????b?23∴直线AD的函数表达式为y?3x?23. ······························· 3分 ⑵∵四边形ABCD是菱形, ∴∠DCB=∠BAD=60°, ∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4, ·························································· 5分 如图所示:
①点P在AD上与AC相切时, AP1=2r=2, ∴t1=2. ·············································································· 6分
②点P在DC上与AC相切时,
y CP2=2r=2,
P2 D C ∴AD+DP2=6, 2 3 ∴t2=6. ······························ 7分
③点P在BC上与AC相切时,
P1 P3 CP3=2r=2,
∴AD+DC+CP3=10,
1 ∴t3=10. ······························ 8分
4 ④点P在AB上与AC相切时, O P4 B A x AP4=2r=2,
∴AD+DC+CB+BP4=14, 第22题图 ∴t4=14,
∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切. ···············································9分
1.(2010四川宜宾)若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
A.点A在圆内 B.点A在圆上 C.点A在圆外 D.不能确定 2.(2010山东德州)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情 况是
(A)0,1,2,3 (B)0,1,2,4 (C)0,1,2,3,4 (D)0,1,2,4,5
3.(2010山东德州)
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点, 交AD于点G,交AB于点F. (1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
答案:1.A 2、C
第20题图 A O F B G C D E 3.(1)证明:连接OE,------------------------------1分 C ∵AB=AC且D是BC中点, ∴AD⊥BC. ∵AE平分∠BAD,
∴∠BAE=∠DAE.------------------------------3分 ∵OA=OE, ∴∠OAE=∠OEA. ∴∠OEA=∠DAE. ∴OE∥AD. ∴OE⊥BC.
∴BC是⊙O的切线.---------------------------6分 (2)∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°.----------------------------7分 ∴∠EOB =60°.------------------------------8分 ∴∠EAO =∠EAG =30°.-------------------9分 ∴∠EFG =30°.------------------------------10分
(2010年常州)6.若两圆的半径分别为2和3,圆心距为5,则两圆的位置关系为
A.外离 B.外切 C.相交 D.内切 (2010株洲市)15.两圆的圆心距d?5,它们的半径分别是一元二次方程x?5x?4?0的两个根,这两圆的位置关系是 外切 .
(2010河北省)23.(本小题满分10分)
观察思考
某种在同一平面进行传动的机械装置如图14-1,图14-2 是它的示意图.其工作原理是:滑块Q在平直滑道l上可以 左右滑动,在Q滑动的过程中,连杆PQ也随之运动,并且 PQ带动连杆OP绕固定点O摆动.在摆动过程中,两连杆的接点P在以OP为半径的⊙O上运动.数学兴趣小组为进一步研 究其中所蕴含的数学知识,过点O作OH ⊥l于点H,并测得 OH =4分米,PQ = 3分米,OP = 2分米.
解决问题
(1)点Q与点O间的最小距离是 分米;
点Q与点O间的最大距离是 分米;
点Q在l上滑到最左端的位置与滑到最右端位置间
D G A O E F B 2滑道 滑块 连杆
图14-1
l
H Q P O 图14-2
相关推荐: