.
12111n?1Tn?1?2+3+L?n?n?1 2222221??1?1?????2?2?1???121?2n???n?1??
2n?1?3n?3 ?22n?1所以Tn?3?n?3. n218.解:(Ⅰ)由题意可知,
1??0.3?0.1?a?0.5?1.4?1.9?1.8?2.3?3.2?3.4?4.5??2, 10可得a?7.
(Ⅱ)对于函数f?x??x2?2?m?1?x?由??2?m?1??4?1?2m, 4m?0, 4解得:
1?m?2. 21?m?2,记作A,B,C,D;不满足的有3个,记2则茎叶图中小于3的数据中,由4个满足作a,b,c;
则任取2个数据,基本事件有
?A,B?,?A,C?,?A,D?,?A,a?,?A,b?,?A,c?,?B,C?,?B,D?,?B,a?,?B,b?,?B,c?, ?C,D?,?C,a?,?C,b?,?C,c?,?D,a?,?D,b?,?D,c?,?a,b?,?a,c?,?b,c?,共21种;
其中恰有1个数据满足条件的有:
?A,a?,?A,b?,?A,c?,?B,a?,?B,b?,?B,c?,?C,a?,?C,b?,?C,c?,?D,a?,?D,b?,?D,c?共12
种,
故所求概率为P?124?. 217.
.
19.解:(Ⅰ)因为DE?平面ABCD,AC?平面ABCD, 所以AC?DE,
菱形ABCD中,AC?BD,
DEIBD?D,DE?面BDE,BD?面BDE.
平面AC?平面BDE.
(Ⅱ)当DE=4时,直线AC//平面BEF,理由如下: 设菱形ABCD中,AC交BD于O,
取BE的中点M,连结OM,则OM为?BDE的中位线, 所以OM//DE,且OM?又AF//DE,AF?1DE?2, 21DE?2, 2所以OM//AF,且OM?AF. 所以,四边形AOMF为平行四边形. 则AC//MF.
因为AC?平面BEF,FM?平面BEF, 所以直线AC//平面BEF.
.
.
20.解:(Ⅰ)由题意知,c?bb???3?c??,所以b?c, 22??又a2?b2?c2,所以a2?2c2
?e?c2?; a2x2y2(Ⅱ)由(Ⅰ)知,设椭圆方程为:2?2?1,设A?x1,y1?,B?x2,y2?,
2bbuuuruuur由AC?2CB知:??1?x1,?y1??2?x2?1,y2??y1??2y2,
设l:x?my?1,
?x?my?1 联立方程组:???m2?2?y2?2my?1?2b2?0?x2y2 ?2?2?1?2bb2m1?2b2由韦达定理:y1?y2?2, ,y1y2?2m?2m?229m?2, 将y1??2y2代入上式消去y2得:b?2?m2?2?2S?AOB11??1?y1?y2?22?y1?y2?21?4y1y2?24m2?m2?2?2?4?1?2b2??m2?2? 2222?m?2b?1??3m13332?????2m2?2m2?2m?2224
m当且仅当m?2?m??2时取得, 此时直线l:x??2y?1 ,即x?2y?1?0.
21.解:(Ⅰ)f?x?的定义域为?0,???
2Qf??x??1?ax??a?1?,f??1??0, xa又切点?1,?2?在曲线f?x?上,??2??a?1?a?2;
2.
.
经检验,a?2时,曲线y?f?x?在x?1处的切线方程为y??2
?f?x??lnx?x2?3x,
12x2?3x?11?f??x???2x?3??0?x?1或0?x?
xx2在?0,?和?1,???上单调递增,在???1?2??1?,1?上单调递减; ?2??1?,1? 2??即f?x?的单调递增区间为:?0,?和?1,???,单调递减区间为:???1?2?f?x?f??x??恒成立,即x22lnx?1即2lnx??a?1?x?1,即?a?1??,?x?0?
x2lnx?1构造函数: F?x??,?x?0?
x2?x??2lnx?1?4?2lnx2?x?e, F??x??x??022xx(Ⅱ)当x?0时,
lnx?1a2?ax??a?1?x??a?1?x2, ?xx2x??0,e2?,F??x??0;x??e2,???,F??x??0; ?F?x?max?F?e2??333;?a?1??a??1, e2e2e2?3??1,??? 2?e?综上所述:实数a的取值范围是?
22.解:(Ⅰ)消去直线l的参数方程??x?1?tcos?中的参数t,得到直线l的普通方程为:
y?tsin??y?tan??x?1?,把曲线C的极坐标方程l:?cos2??4sin??0左右两边同时乘以?,得
到:?cos??4?sin??0,
.
22.
?x??cos?利用公式?代入,化简出曲线C的直角坐标方程:x2?4y; ?y??sin?(Ⅱ)点M的直角坐标为?0,1?,将点M的直角坐标为?0,1?代入直线l:y?tan??x?1?中,
?x?y?1?0得tan???1,即l:x?y?1?0,联立方程组:?2,得AB中点坐标为Q??2,3?,
x?4y?从而PQ?
223.解:(1)不等式f?x???m2?6m恒成立等价于:??f?x???max??m?6m
??2?1?2?32?32 而f?x??x?1?x?4?x?1??x?4??5
??m2?6m?5,?1?m?5
即实数m的取值范围为?1,5?
(2)在(1)的条件下,m的最大值为m0?5,即3a?4b?5c?5 由柯西不等式得:a?b?c?222???9?16?25???3a?4b?5c?2,即50a2?b2?c2?25,
????a2?b2?c2??1 21?a2?b2?c2的最小值为.
2
.
相关推荐: