syms x;
f=exp(-abs(x))*abs(sin(x)); y=int(f,x,-5*pi,1.7*pi); vpa(y,64) ans =
3617514.635647088707100018393465500554242735057835123431773680704 15.计算二重积分?syms x y; f=x^2+y^2;
int(int(f,y,1,x^2),x,1,2) ans = 1006/105
?21?x21(x?y)dydx。
2216.在n?0的限制下,求y(n)?1y()的3?20sinnxdx的一般积分表达式,并计算
32位有效数字表达。(提示:注意限定条件;注意题目要求32位
有效)
syms n positive;syms x; f=sin(x)^n; y=int(f,x,0,pi/2) y =
beta(1/2, n/2 + 1/2)/2 >>beta(1/2,1/6+1/2)/2 ans = 1.2936 >> vpa(ans,32) ans =
1.2935547796148951782413405453553
21
17.求方程x2?y2?1,xy?2的解。(提示:正确使用solve) syms x y;
s=solve(‘x^2+y^2=1’,’x*y=2’,x,y); x=disp(s.x),y=disp(s.y) x=
(1/2 + (15^(1/2)*i)/2)^(1/2)/2 - (1/2 + (15^(1/2)*i)/2)^(3/2)/2 - (1/2 + (15^(1/2)*i)/2)^(1/2)/2 + (1/2 + (15^(1/2)*i)/2)^(3/2)/2 (1/2 - (15^(1/2)*i)/2)^(1/2)/2 - (1/2 - (15^(1/2)*i)/2)^(3/2)/2 - (1/2 - (15^(1/2)*i)/2)^(1/2)/2 + (1/2 - (15^(1/2)*i)/2)^(3/2)/2 y=
(1/2 + (15^(1/2)*i)/2)^(1/2) -((15^(1/2)*i)/2 + 1/2)^(1/2) (1/2 - (15^(1/2)*i)/2)^(1/2) -(1/2 - (15^(1/2)*i)/2)^(1/2)
18.求微分方程yy?5?x?0的通解,并绘制任意常数为1时,如图p2-3所示
4的解曲线图形。(提示:通解中任意常数的替代;构造能完整反映所有解的统一表达式,然后绘图。)
图 p2-3 微分方程的解曲线
22
clear all;
y=dsolve(‘y*Dy/5+x/4=0’,’x’) y =
2^(1/2)*(C3 - (5*x^2)/8)^(1/2) -2^(1/2)*(C3 - (5*x^2)/8)^(1/2) y1=subs(y(1),'C3',1); y2=subs(y(2),'C3',1); ezplot(y1,[-2,2,-2,2],1) hold on
ezplot(y2,[-2,2,-2,2],1)
10. 求边值问题
dfdx?3f?4g,dgdx??4f?3g,f(0)?0,g(0)?1的解。
[y,g]=dsolve('Df=3*f+4*g',’Dg=-4*f+3*g’,'f(0)=0,g(0)=1','x') y =
sin(4*x)*exp(3*x) g =
cos(4*x)*exp(3*x)
23
3. 采用数值计算方法,画出y(x)?y(4.5)。(提示:cumtrapz
?xsinttdt0在[0, 10]区间曲线,并计算
快捷,在精度要求不高处可用;quad也可试。
巧用find。)
clear; t=0:0.1:10; y=sin(t)./t; s =cumtrapz(t,y); plot(t,y)
> y='sin(t)./t'; quad(y,0,4.5,0.01) ans =
1.6541 4. 求函数f(x)?esin3x的数值积分s?? ? 0f(x)dx,并请采用符号计算尝试复
算。(提示:各种数值法均可试。) 数值计算:
f=’exp(sin(x).^3)’; s=quad(f,0,pi,pi/10) s =
5.1254 符号计算: syms x;
24
相关推荐: