专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印 3.设
f?x??ln?1?x?,则f?4! B .55??x?= ( )
解:e2x?y?2?y???sin?xy???y?xy???0
A .
?4!?1?x?5!?1?x??5! 5e??2?y??0???0?0,y??0??f??0???2
选B
C.
?1?x? D. 5?1?x?5
5. 设
???f?x?为可导偶函数,且g?x??f?cosx?,则g'??? ( )
?2?解:
f??x???1?x?,
?2?1 A. 0 B .1 C .-1 D. 2 解:(1)
?3f???x???1?1?x?, f????x????1???2??1?x?f?4?g??x??f??cosx???cosx??
?4?f??cosx????sinx?
,
?5?x????1???2???3??1?x?(2)?f??x??f?x?,
f(5)?x????1???2???3???4??1?x?4.设
?4!(1?x)?5 选A
?f???x????1??f??x? ?f??0??f??0?得f??0??0
(3)g??y?f?x?由方程e2x?y?cos?xy??e?1所确定,则曲线y?f?x?在点
(0,1)的切线斜率
f?(0)= ( )
A .2 B. -2 C .
??????f?0??0 选A 2??x?011 D. -
2225
6.设( )
f?x?在x?1有连续导数,且f??1??2,则lim?dfcosx? dx??
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印 A. 1 B. -1 C. 2 D .-2 解:
ddxf?cosx?
?f??cosx????sinx??12x
(2)原式??sinxxlim?0?2xf??cosx?
??12f??1???1 选B
二、填空题(每小题4分,共24分)
?t7.若??x?esint??y?e?tcost,
则
d2ydx2? 解:(1)
dy?e?tcost?dx?e?tsintesint?etcoste?2tt?(?1) (2)
d2ydy?dy?dx?2e?3tdx2?dx?dtdt?sint?cost
8.设
f?x??1?ln2x,
则
f??e?=
2lnx?11解:(1)
f??x??xxlnx 21?ln2x?1?ln2x(2)
f??e??112e?22e 9. 直线l与
x轴平行,且与曲线y?x?ex相切,则切点坐标是
解:?y曲??1?ex,y?e?0?ex?1?0 故有切点坐标
?0,?1?
10.
y?f?x?由方程x3?y3?sinx?6y?0确定,则dy?x?0? 解:当x?0时,y3?6y?0得y?0
3x2?3y2?y??cosx?6y??0
y??0??16,dy?1x?0?y??0?dx?6dx 26
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
?ln1?ex11.设y1?ex,
则dy?
解:y?12ln?1?ex??12ln?1?ex?
x1exy??1?e21?ex?21?ex?exe2x?1 12.设
f?x??an10x?an?1x???an?1x?a0,则解:
f??x??na?10xn?(n?1)an?21x
??an?1?? f?n??x??n?n?1???an?n0x
?n!a,f?n?0?0??n!a0
三、计算题(每小题8分,共64分)
13 .设
y?ln1?x?11?x?1,求dy。
解: (1)
y?ln(1?x?1)?ln?1?x?1?
f?n??0?= (2)y??111?x?121?x ?111?x?121?x?1x1?x
(3)dy?1x1?xdx
14.设
y?xarcsinx2?4?x2,求y?及y??。1解:(1) y??arcsinx2?x2 1???x?2?2????2xxx24?x2?arcsin2?
4?x2?x4?x2?arcsinx2 (2)y?????x???arcsin2??
27
专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印
?x?????2??1?x?2?2 1?4?x??2??15.方程sin?xy??lnx?1y?1确定y?y?x?,求dydx?x?0
解:(1)cos?xy??(y?xy?)?1x?1?y??1y=0
(2) 当
x?0时,0?lny?1?y?e
(3)cos?0?e??(e?0)?1?1ey?(0)?0 e?1?1ey?(0) ,y?(0)?e(e?1) 16.设
y?x?sinx?cosx,求
y?
解:(1)lny?lnx?cosxlnsinx
(2)1yy??1x?sinx?lnsinx?cosxcosxsinx
y??x?sinx?cosx??1cos2x?17 .设
?x?sinx?sinxln?sinx??????x?ln1?t2t?arctant,确定y?yd2y??x?,求。?y?dx2 dy1?1解:(1)dydx?dtdx?1?t212t?t
21?t2dt(2)d2ydydy??t??1?t2dx2??dx?dtdx?t?t dt1?t218. 设y?1?x1?x,求y?n?
解:(1)变形,y??1?x?221?x??1?1?x (2)
y??2??1??1?x??2
y???2??1???2??1?x??3
y????2??1???2??1?x??4??
y?n??2??1?nn!?1?x??n?1
28
相关推荐: