Ò»¡¢Ñ¡ÔñÌâ
3¡¢Í¼Ê¾¸÷¸Ë×ÔÖØ²»¼Æ£¬ÒÔÏÂËÄÖÖÇé¿öÖУ¬ÄÄÒ»ÖÖÇé¿öµÄBD¸Ë²»ÊǶþÁ¦¹¹¼þ£¿
4¡¢ÒÔÏÂËÄÖÖ˵·¨£¬ÄÄÒ»ÖÖÊÇÕýÈ·µÄ
£¨A£©Á¦ÔÚÆ½ÃæÄÚµÄͶӰÊǸöʸÁ¿£»
£¨B£©Á¦¶ÔÖáÖ®¾ØµÈÓÚÁ¦¶ÔÈÎÒ»µãÖ®¾ØµÄʸÁ¿ÔÚ¸ÃÖáÉϵÄͶӰ£» £¨C£©Á¦ÔÚÆ½ÃæÄÚµÄͶӰÊǸö´úÊýÁ¿£»
£¨D£©Á¦Å¼¶ÔÈÎÒ»µãOÖ®¾ØÓë¸ÃµãÔÚ¿Õ¼äµÄλÖÃÓйء£
5¡¢Í¼Ê¾½á¹¹£¬Æä¶ÔAµãÖ®¾ØµÄƽºâ·½³ÌΪ
(A) ?mA(F) = m + Psin? ? L/2 + 2Qa + mA = 0 (B) ?mA(F) = -m - Psin? ? L/2 + Qa = 0 (C) ?mA(F) = -mL - P ? L/2 + Qa/2 + mA = 0 (D) ?mA(F) = -m - Psin? ? L/2 + Qa + mA = 0
6¡¢×÷ÓÃÔÚ¸ÕÌåÉϵÄÁ¦F¶Ô¿Õ¼äÄÚÒ»µãOµÄ¾ØÊÇ
£¨A£©Ò»¸öͨ¹ýOµãµÄ¹Ì¶¨Ê¸Á¿£» £¨B£©Ò»¸ö´úÊýÁ¿£» £¨C£©Ò»¸ö×ÔÓÉʸÁ¿£» £¨D£©Ò»¸ö»¬¶¯Ê¸Á¿¡£
7¡¢ÒÑÖªÎï¿éÖØÎªP£¬·ÅÔÚµØÃæÉÏ£¬Îï¿éÓëµØÃæÖ®¼äÓÐĦ²Á£¬ÆäĦ²Á½ÇΪ?m=20?£¬Îï¿éÊÜͼ
ʾQÁ¦µÄ×÷Óã¬ÈôQ=P£¬ÒÔÏÂËÄÖÖÇé¿ö£¬ÄÄÒ»ÖÖ˵·¨ÊÇÕýÈ·µÄ¡£
8¡¢µãÑØÍ¼Ê¾ÂÝÐýÏß×ÔÍâÏòÄÚÔ˶¯£¬Ëü×ß¹ýµÄ»¡³¤Óëʱ¼äµÄÒ»´Î·½³ÉÕý±È£¬Ôò¸Ãµã
(A) Ô½ÅÜÔ½¿ì£» (B) Ô½ÅÜÔ½Âý£»
(C) ¼ÓËÙ¶ÈÔ½À´Ô½´ó£» (D) ¼ÓËÙ¶ÈÔ½À´Ô½Ð¡¡£
9¡¢µã×÷ÇúÏßÔ˶¯Ê±£¬
(A) ÈôʼÖÕÓÐv?a£¬Ôò±ØÓÐ?v? = ³£Á¿ (B) ÈôʼÖÕÓÐv?a£¬Ôòµã±Ø×÷ÔÈËÙÔ²ÖÜÔ˶¯ (C) ²»¿ÉÄÜ´æÔÚij˲ʱÓÐv??a
(D) Èôij˲ʱv = 0£¬ÔòÆä¼ÓËÙ¶Èa±ØµÈÓÚÁã
10¡¢¸ÕÌå×÷¶¨Öáת¶¯Ê±
(A) ÆäÉϸ÷µãµÄ¹ì¼£±Ø¶¨ÎªÒ»Ô²£»
(B) ij˲ʱÆäÉÏÈÎÒâÁ½µãµÄ·¨Ïò¼ÓËÙ¶È´óСÓëËüÃǵ½×ªÖáµÄ´¹Ö±¾àÀë³É·´±È£» (C) ij˲ʱÆäÉÏÈÎÒâÁ½µãµÄ¼ÓËÙ¶È·½Ïò»¥ÏàÆ½ÐУ»
(D) ij˲ʱÔÚÓëתÖá´¹Ö±µÄÖ±ÏßÉϵĸ÷µãµÄ¼ÓËÙ¶È·½Ïò»¥ÏàÆ½ÐС£ 11¡¢Æ½ÒƸÕÌåÉϵãµÄÔ˶¯¹ì¼££¬
(A) ±ØÎªÖ±Ïߣ» (B) ±ØÎªÆ½ÃæÇúÏߣ» (C) ²»¿ÉÄÜÊǿռäÇúÏߣ» (D) ¿ÉÄÜÊǿռäÇúÏß¡£
12¡¢Í¼Ê¾»ú¹¹ÖУ¬Ö±½ÇÐθËOABÔÚͼʾλÖõĽÇËÙ¶ÈΪ?£¬ÆäתÏòΪ˳ʱÕëÏò¡£È¡Ð¡»·M
Ϊ¶¯µã£¬¶¯ÏµÑ¡ÎªÓëÖ±½ÇÐθËOAB¹ÌÁ¬£¬ÔòÒÔÏÂËÄͼÖе͝µãËÙ¶ÈÆ½ÐÐËıßÐΣ¬ÄÄÒ»¸öÊÇÕýÈ·µÄ
13¡¢µãµÄºÏ³ÉÔ˶¯ÖÐËٶȺϳɶ¨ÀíµÄËÙ¶ÈËıßÐÎÖÐ
(A) ¾ø¶ÔËÙ¶ÈΪǣÁ¬ËٶȺÍÏà¶ÔËÙ¶ÈËù×é³ÉµÄƽÐÐËıßÐεĶԽÇÏߣ» (B) Ç£Á¬ËÙ¶ÈΪ¾ø¶ÔËٶȺÍÏà¶ÔËÙ¶ÈËù×é³ÉµÄƽÐÐËıßÐεĶԽÇÏߣ» (C) Ïà¶ÔËÙ¶ÈΪǣÁ¬ËٶȺ;ø¶ÔËÙ¶ÈËù×é³ÉµÄƽÐÐËıßÐεĶԽÇÏߣ» (D) Ïà¶ÔËÙ¶È¡¢Ç£Á¬ËٶȺ;ø¶ÔËÙ¶ÈÔÚÈÎÒâÖáÉÏͶӰµÄ´úÊýºÍµÈÓÚÁã¡£
14¡¢Æ½ÃæÍ¼ÐÎÉÏÈÎÒâÁ½µãA¡¢BµÄËÙ¶ÈÔÚÆäÁ¬ÏßÉϵÄͶӰ·Ö±ðÓÃ[vA]ABºÍ[vB]AB±íʾ£¬¡¢Á½µãµÄ¼ÓËÙ¶ÈÔÚÆäÁ¬ÏßÉÏ Í¶Ó°·Ö±ðÓÃ[aA]ABºÍ[aB]AB±íʾ£¬Ôò
(A) ¿ÉÄÜÓÐ[vA]AB=[vB]AB, [aA]AB?[aB]AB£» (B) ²»¿ÉÄÜÓÐ[vA]AB=[vB]AB, [aA]AB?[aB]AB£» (C) ±ØÓÐ[vA]AB=[vB]AB, [aA]AB=[aB]AB£» (D) ¿ÉÄÜÓÐ[vA]AB?[vB]AB, [aA]AB?[aB]AB¡£
15¡¢½«¸ÕÌåÆ½ÃæÔ˶¯·Ö½âÎªÆ½ÒÆºÍת¶¯£¬ËüÏà¶ÔÓÚ»ùµãAµÄ½ÇËٶȺͽǼÓËÙ¶È·Ö±ðÓÃ?A ºÍ?A±íʾ£¬¶øÏà¶ÔÓÚ»ùµãBµÄ½ÇËٶȺͽǼÓËÙ¶È·Ö±ðÓÃ?BºÍ?B±íʾ£¬Ôò
(A) ?A=?B, ?A=?B; (B) ?A=?B, ?A??B; (C) ?A??B, ?A=?B; (D) ?A??B, ?A??B.
16¡¢×÷ÓÃÔÚ¸ÕÌåµÄÍ¬Æ½ÃæÉϵÄÈý¸ö»¥²»Æ½ÐеÄÁ¦£¬ËüÃǵÄ×÷ÓÃÏ߻㽻ÓÚÒ»µã£¬ÕâÊǸÕÌ寽ºâµÄ
(A) ±ØÒªÌõ¼þ£¬µ«²»Êdzä·ÖÌõ¼þ£» (B) ³ä·ÖÌõ¼þ£¬µ«²»ÊDZØÒªÌõ¼þ£» (C) ±ØÒªÌõ¼þºÍ³ä·ÖÌõ¼þ£»
(D) ·Ç±ØÒªÌõ¼þ£¬Ò²²»Êdzä·ÖÌõ¼þ¡£
17¡¢Í¼Ê¾ÎÞÖØÖ±¸ËACDÔÚC´¦ÒԹ⻬½ÂÁ´ÓëÖ±½Ç¸Õ¸ËBCÁ¬½Ó£¬ÈôÒÔÕûÌåΪÑо¿¶ÔÏó£¬ÒÔ
ÏÂËÄͼÖÐÄÄÒ»¸öÊÇÕýÈ·µÄÊÜÁ¦Í¼¡£
18¡¢Í¼Ê¾Îª×÷ÓÃÔÚ¸ÕÌåÉϵÄËĸö´óСÏàµÈÇÒ»¥Ïà´¹Ö±µÄÁ¦(F1, F2, F3, F4) F1 = F2 = F3 = F4 = FËù×é³ÉµÄÆ½ÃæÈÎÒâÁ¦Ïµ£¬Æä¼ò»¯µÄ×îºó½á¹ûΪ
£¨A£©¹ýOµãµÄºÏÁ¦£»£¨B£©Á¦Å¼£»£¨C£©Æ½ºâ£»£¨D£©¹ýAµãµÄºÏÁ¦¡£
19¡¢Í¼Ê¾»ú¹¹£¬ÒÔÕûÌåΪ¶ÔÏ󣬯ä¶ÔOµãÖ®¾ØµÄƽºâ·½³ÌΪ
(A) ?mO(F) = m + P?L?sin? = 0
(B) ?mO(F) = - m + SA?L + P?L?sin? = 0
(C) ?mO(F) = - m + P?L?sin? + NB?3L?cos? = 0
(D) ?mO(F) = m + P?L?sin? + SA?L + NB?3L?cos? = 0
20¡¢ÒÔÏÂËĸöͼËùʾµÄÊÇÒ»ÓÉF1 ¡¢F2 ¡¢F3 Èý¸öÁ¦Ëù×é³ÉµÄÆ½Ãæ»ã½»Á¦ÏµµÄÁ¦Èý½ÇÐΣ¬ÄÄ
Ò»¸öͼ±íʾ´Ë»ã½»Á¦ÏµÊÇÆ½ºâµÄ
Ïà¹ØÍÆ¼ö£º