求(1△4)☆2的值。
分析 注意本题有两种运算,由(1△3)☆3=1△(3☆3),可求出x. 解 因为(1△3)☆3=1△(3☆3),所以(1×x) 即
(x+3)÷2=x x+3=2x x=3
因为(1△4)☆2 =(1×4)☆2 =(4+2)÷2 =3
2. 如果规定:③=2×3×4,④=3×4×5,⑤=4×5×6,??,⑨=8×9×10,求⑨+⑧-⑦+⑥-⑤+④-③的值。
解题思路
依题意可以看出:定义的新运算为连续三个数的乘积,而且,⑤里的数就是三个连续数中的中间的哪个数,即③是2,3,4三个连续的乘积,④是3,4,5三个连续睡的乘积,从而不难求出⑨+⑧-⑦+⑥-⑤+④-③的值。
解:原式=8×9×10+7×8×9-6×7×8+5×6×7-4×5×6+3×4×5-2×3×4 =720+504+-339+210-120+60-24 =1014
三、能力提升
- 13 -
答案
(四) 行程问题
行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。行程问题中包括:火车过桥、流
- 14 -
水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:
这三个量是:路程(s)、速度(v)、时间(t)
三个关系:1. 简单行程: 路程 = 速度 × 时间
2. 相遇问题: 路程和 = 速度和 × 时间
3. 追击问题: 路程差 = 速度差 × 时间
牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。
① 追击及遇问题
一、例题与方法指导
例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?
思路导航: 这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。
第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米) 第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷ (38-36)=114(分钟)
第二个相遇:在114分钟里,甲、乙二人一起走完了全程 所以花圃周长为(40+38)×114=8892(米)
我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。
例2. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。乙车每小时行多少千米?
思路导航:
从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行
了多少路程和行这段路程所用的时间。
解:(1)甲车一共行多少小时?1.5+3=4.5(小时)
(2)甲车一共行多少千米路程?25×4.5=112.5(千米) (3)乙车一共行多少千米路程?217.5-112.5=105(千米)
- 15 -
(4)乙车每小时行多少千米? (105-15)÷3=30(千米) 答:乙车每小时行30千米。
例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。哥哥骑自行车每分钟行200米,妹妹每分钟走80米。哥哥刚到学校就立即返回来在途中与妹妹相遇。从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?
思路导航:
从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。
解:(1)从家到学校的距离的2倍:1400×2=2800(米)
(2)从出发到相遇所需的时间:2800÷(200+80)=10(分) (3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。
二、巩固训练
1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?
分析:如果乙在中途不停车,那么甲、乙两人从出发到相遇共行路程的和:328+22×1=350(千米),两车的速度和:28+22=50(千米/小时),然后根据相遇问题“路程和÷速度和=相遇时间”得 350÷50=7(小时)
解:(328+22×1)÷(28+22)
=350÷50 =7(小时)
解法2:
(328-22×1)÷(28+22) =300÷50 =6(小时) 6+1=7(小时)
答:从出发到相遇经过了7小时。
2. 快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?
分析:
- 16 -
相关推荐: