(2)证明:设A?x1,y1?,E?x2,y2?,则B??x1,?y1?,D?x1,0?.
2因为点A,E都在椭圆C上,所以???xy21?21?2,22y ??x22?2?2,所以?x1?x2??x1?x2??2?y1?y2??y1?y2??0, 即
y1?y2xx??x1?x2.
1?22?y1?y2?又?uuABur?uuEBr???uuDBur?uuuADr??uuAEur?uuABur?0,
所以kAB?kAE??1, 即
y1x?y1?y2x??1, 1x1?2所以
y1x?x?1x2y?1 12?y1?2?所以
y12?y1?y2x???x 1x12又ky1?y2BE?kBD??y1?y1?y2y1?y2xx??0,
1?x22x11?x2x1?x2所以kBE?kBD,
所以B,D,E三点共线.
21.(1)解:f?x?的定义域为?0,???,
f??x??2mx?2mx?1??x. ①当m?0时,f??x??0,故f?x?在?0,???内单调递减,f?x?无极值; ②当m?0时,令f??x??0,得0?x?2m; 令f??x??0,得x?2m.
故f?x?在x?2m处取得极大值,且极大值为f?2m??2mln?2m??2m,f?x?无极小值.
3ex?36m(2)当x?0时,g?x??3f??x??0?x2?x?3?0?3ex?3x2?6mx?3?0. 设函数u?x??3ex?3x2?6mx?3,
则u??x??3?ex?2x?2m?.记v?x??ex?2x?2m, 则v??x??ex?2.
当x变化时,v??x?,v?x?的变化情况如下表:
由上表可知v?x??v?ln2?,
而v?ln3??eln2?2ln2?2m?2?2ln2?2m?2?m?ln2?1?, 由m?1,知m?ln2?1, 所以v?ln2??0,
所以v?x??0,即u??x??0.
所以u?x?在?0,???内为单调递增函数. 所以当x?0时,u?x??u?0??0.
即当m?1且x?0时,3ex?3x2?6mx?3?0. 所以当m?1且x?0时,总有g?x??3f??x??0. 22.解:(1)由??4cos?得?2?4?cos?, 所以x2?y2?4x?0,
所以圆C的直角坐标方程为(x?2)2?y2?4.
将直线l的参数方程代入圆C:(x?2)2?y2?4,并整理得t2?22t?0,
解得t1?0,t2??22.
所以直线l被圆C截得的弦长为|t1?t2|?22. (2)直线l的普通方程为x?y?4?0.
圆C的参数方程为??x?2?2cos?,(?为参数),
?y?2sin?,可设圆C上的动点P(2?2cos?,2sin?), 则点P到直线l的距离d?|2?2cos??2sin??4|2?|2cos(???4)?2|.
当cos(???4)??1时,d取最大值,且d的最大值为2?2, 所以S1?ABP?2?22?(2?2)?2?22, 即?ABP的面积的最大值为2?2. ????3x,x??1,23. 解:(1)f(x)???2?x,?1?x?1,
?2??1?3x,x?2.根据函数f(x)的单调性可知,
当x?12时,f(x)13min?f(2)?2. 所以函数f(x)的值域M?[32,??).
(2)因为a?M,所以a?32,所以0?32a?1.
又|a?1|?|a?1|?a?1?a?1?2a?3, 所以|a?1|?|a?1|?32a 3?7?4a2?7a?3?a?1??42a???2?2a???2a?a?3?2a
3,知a?1?0,4a?3?0, 2(a?1)(4a?3)所以?0,
2a37所以??2a,
2a237所以|a?1|?|a?1|???2a.
由a?
2a2
相关推荐: