第一范文网 - 专业文章范例文档资料分享平台

8数码问题

来源:用户分享 时间:2025/5/28 16:44:56 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

高级人工智能程序设计报告

题 目:8数码问题

学 院:计算机学院

专 业:软件工程

学 号:2111505127

姓 名:马隆杰

高级人工智能程序设计说明报告

1.问题

八数码游戏(八数码问题)描述为:在3×3组成的九宫格棋盘上,摆有八个将牌,每一个将牌都刻有1-8八个数码中的某一个数码。棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。这种游戏求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标的布局(称目标状态),问如何移动将牌,实现从初始状态到目标状态的转变。 初始状态:

8个数字将牌和空格在九宫格棋盘上的所有格局组成了问题的状态空间。其

中,状态空间中的任一种状态都可以作为初始状态。 后继函数:

通过移动空格(上、下、左、右)和周围的任一棋子一次,到达新的合法状

态。 目标测试:

比较当前状态和目标状态的格局是否一致。

路径消耗:

每一步的耗散值为1,因此整个路径的耗散值是从起始状态到目标状态的棋

子移动的总步数。

2.采用技术方法

对于八数码问题的解决,首先判断是否有解。每一个状态看作是一个3×3或1×9的矩阵,问题即通过矩阵的变换,是否可以变换为目标状态对应的矩阵?由数学知识可知,可计算这两个有序数列的逆序值,如果两者都是偶数或奇数,则可通过变换到达,否则,这两个状态不可达。这样,就可以在具体解决问题之前判断出问题是否可解,从而可以避免不必要的搜索。

如果初始状态可以到达目标状态,那么采取什么样的方法呢?

常用的状态空间搜索有深度优先和广度优先。广度优先是从初始状态一层一层向下找,直到找到目标为止。深度优先是按照一定的顺序前查找完一个分支,再查

找另一个分支,以至找到目标为止。 广度和深度优先搜索有一个很大的缺陷就是他们都是在一个给定的状态空间中穷举。这在状态空间不大的情况下是很合适的算法,可是当状态空间十分大,且不预测的情况下就不可取了。他的效率实在太低,甚至不可完成。由于八数码问题状态空间共有9!个状态,对于八数码问题如果选定了初始状态和目标状态,有9!/2个状态要搜索,考虑到时间和空间的限制,在这里采用A*算法作为搜索策略。在这里就要用到启发式搜索 启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标。这样可以省略大量无畏的搜索路径,提到了效率。在启发式搜索中,对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。

启发中的估价是用估价函数表示的,如:f(n) = g(n) + h(n)

其中f(n) 是节点n的估价函数,g(n)是在状态空间中从初始节点到n节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。 在此八数码问题中,显然g(n)就是从初始状态变换到当前状态所移动的步数,估计函数f(n)我们就可采用当前状态各个数字牌不在目标状态未知的个数,即错位数。

2.1算法介绍

不管哪种搜索,都统一用这样的形式表示:搜索的对象是一个图,它面向一个问题,不一定有明确的存储形式,但它里面的一个结点都有可能是一个解(可行解),搜索的目的有两个方面,或者求可行解,或者从可行解集中求最优解。

搜索算法可分为两大类:无信息的搜索算法和有信息的搜索算法。无信息的搜索又称盲目搜索,其特点是只要问题状态可以形式化表示,原则上就可用使用无信息的搜索,无信息搜索有如下常见的几种搜索策略:广度优先搜索、代价一致搜索、深度优先搜索、深度有限搜索、迭代深入优先搜索、双向搜索。我们说DFS和BFS都是蛮力搜索,因为它们在搜索到一个结点时,在展开它的后续结点时,是对它们没有任何‘认识’的,它认为它的孩子们都是一样的‘优秀’,但事实并非如此,后续结点是有好有坏的。好,就是说它离目标结点‘近’,如果优先处理它,就会更快的找到目标结点,从而整体上提高搜索性能。

为了改善上面的算法,我们需要对展开后续结点时对子结点有所了解,这里需要一个估值函数,估值函数就是评价函数,它用来评价子结点的好坏,因为准

确评价是不可能的,所以称为估值。这就是我们所谓的有信息搜索。如果估值函数只考虑结点的某种性能上的价值,而不考虑深度,比较有名的就是有序搜索(Ordered-Search),它着重看好能否找出解,而不看解离起始结点的距离(深度)。如果估值函数考虑了深度,或者是带权距离(从起始结点到目标结点的距离加权和),那就是A*如果不考虑深度,就是说不要求最少步数,移动一步就相当于向后多展开一层结点,深度多算一层,如果要求最少步数,那就需要用A*。简单的来说A*就是将估值函数分成两个部分,一个部分是路径价值,另一个部分是一般性启发价值,合在一起算估整个结点的价值,

考虑到八数码问题的特点,在本实验中使用A*算法求解。A*搜索是一种效的搜索算法,它把到达节点的耗散g(n)和从该节点到目标节点的消耗h(n)结合起来对节点进行评价:f(n)=g(n)+h(n)。当h(n)是可采纳时,使用Tree-Search的A*算法将是最优的。 算法伪代码:

算法的功能:产生8数码问题的解(由初始状态到达目标状态的过程) 输入:初始状态,目标状态

输出:从初始状态到目标状态的一系列过程 算法描述: Begin:

读入初始状态和目标状态,并计算初始状态评价函数值f; 根据初始状态和目标状态,判断问题是否可解; If(问题可解)

把初始状态假如open表中; While(未找到解&&状态表非空)

①在open表中找到评价值最小的节点,作为当前结点; ②判断当前结点状态和目标状态是否一致,若一致,跳出循环;否则跳转到③;

③对当前结点,分别按照上、下、左、右方向移动空格位置来扩展新的状态结点,并计算新扩展结点的评价值f并记录其父节点; ④对于新扩展的状态结点,判断其是否重复,若不重复,把其加

搜索更多关于: 8数码问题 的文档
8数码问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4gqtn1z3n52mdyx42w9y_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top