第一范文网 - 专业文章范例文档资料分享平台

历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(4)

来源:用户分享 时间:2025/5/29 9:35:43 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

历年(95-10)年全国初中数学竞赛(联赛)分类题型详解-几何(4)

证明题 (9道题)

1.材已知∠ACE=∠CDE=90°,点B在CE上,CA=CB=CD,经A、C、D三点的圆交AB于F(如图)求证F为△CDE的内心。

1995年全国初中数学联赛试题

证法1:如图6,连DF,则由已知,有

连BD、CF,由CD=CB,知 ∠FBD=∠CBD-45° =∠CDB-45°=∠FDB,

得FB=FD,即F到B、D和距离相等,F在线段BD的垂直平分线上,从而也在等腰三角形CBD的顶角平分线上,CF是∠ECD的平分线.

由于F是△CDE上两条角平分线的交点,因而就是△CDE的内心.

证法2:同证法1,得出∠CDF=45°=90°-45°=∠FDE之后,由于∠ABC=∠FDE,故有B、E、D、F四点共圆.连EF,在证得

∠FBD=∠FDB之后,立即有∠FED=∠FBD=∠FDB=∠FEB,即EF是∠CED的平分线.

2. 设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点

(位置如图所示),求证:∠OPF=∠OEP.

1996年全国初中数学联赛试题

证 作AD、BO的延长线相交于G,∵OE

3.如图所示,已知AB是⊙O的直径,BC是⊙O的切线,OC平行于弦AD,过点D作

DE⊥AB于点E,连结AC,与DE交于点P. 问EP与PD是否相等?证明你的结论.

A D P E O

2003年“TRULY?信利杯”全国初中数学竞赛试题

解:DP=PE. 证明如下:

B C 因为AB是⊙O的直径,BC是切线, 所以AB⊥BC.

由Rt△AEP∽Rt△ABC,得

EPAE? . ① BCAB又AD∥OC,所以∠DAE=∠COB,于是Rt△AED∽Rt△OBC. 故

EDAEAE2AE ② ???BCOB1ABAB2由①,②得 ED=2EP. 所以 DP=PE.

4.如图所示,在△ABC中,∠ACB=90°.

CD2?BD2AD?BD?(1)当点D在斜边AB内部时,求证:. 2BCAB(2)当点D与点A重合时,第(1)小题中的等式是否存在?请说明理由. (3)当点D在BA的延长线上时,第(1)小题中的等式是否存在?请说明理由.

C B

2003年“TRULY?信利杯”全国初中数学竞赛试题 证:(1)作DE⊥BC,垂足为E. 由勾股定理得

D A

CD2?BD2?(CE2?DE2)?(BE2?DE2)?CE2?BE2?(CE?BE)BC. E B 2

C D 2A

CD?BDCE?BECEBE???. 2BCBCBCBCCEADBEBD?,?因为DE∥AC,所以 . BCABBCAB所以

CD2?BD2ADBDAD?BD???故 . 2ABABABBC(2)当点D与点A重合时,第(1)小题中的等式仍然成立。此时有

AD=0,CD=AC,BD=AB.

CD2?BD2AC2?AB2?BC2????1, 所以 222BCBCBCAD?BD?AB???1.

ABAB从而第(1)小题中的等式成立.

(3)当点D在BA的延长线上时,第(1)小题中的等式不成立. 作DE⊥BC,交BC的延长线于点E,则

CD?BDCE?BE?BC2BC2

CE?BE2CE????1?,BCBCAD?BD?AB???1, 而

ABABCD2?BD2AD?BD?所以 .

ABBC22222 E C B A D

5. 如图,半径不等的两圆相交于A,B两点,线段CD经过点A,且分别交两圆于C,D两点. 连结BC,BD,设P,Q,K分别是BC,BD,CD的中点,M,N分别是弧BC和弧BD的中点. 求证:

(1)

BPNQ?; PMQB (2)△KPM∽△NQK

CPQBNKADM 2005年“卡西欧杯”全国初中数学竞赛试题

6.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.

历年(95-10)全国初中数学竞赛(联赛)分类题型详解-几何(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4hf133myid41z4g1ryxz_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top