,.
5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?
6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?
,.
四年级奥数题:牛吃草问题解析
基本思路:
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。 ③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。 基本公式:
解决牛吃草问题常用到四个基本公式,分别是∶
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数; (3)吃的天数=原有草量÷(牛头数-草的生长速度); (4)牛头数=原有草量÷吃的天数+草的生长速度 第一种:一般解法
“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。” 一般解法:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。) (2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。) (3)1天新长的草为:(207-162)÷(9-6)=15 (4)牧场上原有的草为:27×6-15×6=72
,.
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。 第二种:公式解法
有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛? 解答:
1) 草的生长速度:(21×8-24×6)÷(8-6)=12(份) 原有草量:21×8-12×8=72(份) 16头牛可吃:72÷(16-12)=18(天)
2) 要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数 所以最多只能放12头牛。
,.
小学四年级奥数题及答案和题目分析
一、按规律填数。
1)64,48,40,36,34,( ) 2)8,15,10,13,12,11,( )
3)1、4、5、8、9、( )、13、( )、( ) 4)2、4、5、10、11、( )、( ) 5)5,9,13,17,21,( ),( ) 二、等差数列
1.在等差数列3,12,21,30,39,48,…中912是第几个数?
2.求1至100内所有不能被5或9整除的整数和
3.把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?
4.把从1开始的所有奇数进行分组,其中每组的第一个数都等于此组中所有数的个数,如(1),(3、5、7),(9、11、13、15、17、19、21、23、25),(27、29、……79),(81、……),求第5组中所有数的和
三、 平均数问题
1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是______ .
,.
2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_______ .
3.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?
4.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数. 23, 26, 30, 33
A、B、C、D 4个数的平均数是多少?
5 A、B、C、D4个数,每次去掉一个数,将其余3个数求平均数,这样计算了4次得到下面4个数23、26、30、33,A、B、C、D4个数的和是 。
四、加减乘除的简便运算
1)100-98+96-94+92-90+……+8-6+4-2=( ) 2)1976+1977+……2000-1975-1976-……-1999=( ) 3)26×99 =( )
4)67×12+67×35+67×52+67=( )
相关推荐: