第一范文网 - 专业文章范例文档资料分享平台

北京交通大学信号与系统期末考试试题

来源:用户分享 时间:2025/12/15 18:33:24 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

北 京 交 通 大 学 考 试 试 题

课程名称:信号与系统

姓名: 学号: 班级: 成绩:

题 号 一 二 三 四 五 六 七 八 九 十 总分 得 分 阅卷人

一、填空题(每题3分,共30分)

1.?? . 2. x1(n)={1,3,3;n= ?1,0,1}, x2(n)={1,4;n= ?1,0},determine x1(n)*x2(n) = . 3.Consider sampling x(t)?Sa(10t),determine the maximum of sampling interval T so that

there will be no aliasing Tmax? (s).

4.A LTI system has input x(t)?sin(t)u(t) and output y(t)?(e?cost?sint)u(t),determine the impulse response of this system h(t)? .

5.A system has inputx1(t)and output y1(t). If the system has properties, then the input and output pairs has the relationship: input isx2(t)?x1(t?2)?3x1(t?3), so output is y2(t)?y1(t?2)?3y1(t?3)。 6.The transfer function of a LTI system is

(high-pass, low-pass, band-pass or band-stop ?)

?t??e?t?(2t?4)u(t?1)dt?H(s)?2s?1, the system belongs to type .

?j?7.the FS ofx(t)is X(j?), the FS of is X(j2?)e。

8. the impulse response of integrator is ,the impulse response of differentiator is , the impulse response of discrete-time time-shift operator is 。 9. x(n)??0.8?u(n?2),determineX(enj?)= 。

2?3?x(n)?1?cos(n)?sin(n)7710.,Sketch the magnitude spectraX(k), where X(k)is

DTFS coefficients of x(n).

二、简单计算题(每题6分,共30分)

1.x ( t ) is shown in following figure. Sketch x (2? 2t )u (-t) and write out the brief steps.

x(t)x(2?2t)u(?t)1t?201

2.x(t)and h(t) are shown in following figure. Suppose y(t)?x(t)*h(t). Sketch y(t)。

0tx(t)12h(t)11-10t ?202t

3.h1(n)?(3)system。

n?1u(n?1), h2(n)?(2)nu(n). Determine h(n), the impulse response of this

x(n)h1(n)h2(n)++y(n)?

4.Determine a state-variable description for the system depicted in following figure. Write out A、B、C、D。

?q1(n?1)??q1(n)??x1(n)??y1(n)??q1(n)??x1(n)??A?B?C?D?q(n?1)??q(n)??x(n)??y(n)??q(n)??x(n)??2??2??2? ?2??2??2?

x1(n)?-z?12q1(n)?y1(n)x2(n)?-z?13q2(n)?y2(n)

5.H(j?), frequency response of a LTI system, is shown in following figure. Input is

x(t)?2?3cos(t)?4cos(2t)?5cos(3t),(???t???). Determine the output y(t)。

H(j?)8-404三、计算题(40分) 1.(12分)A LTI system is described by following difference equation:

?

51y(n?1)?y(n?2)?x(n)66

input is x(n)?u(n),initial conditions arey[?1]?1,y[?2]?0, compute in Z-domain: (1) Transfer functionH(z), impulse response h(n);

y(n)?(2) yzi(n), yzs(n) and y(n). 2.(14分)A LTI system is described by following differential equation:

y\(t)?5y'(t)?4y(t)?x'(t)?2x(t),

input is x(t)?u(t),initial conditions arey(0)?2,(1) Transfer functionH(s). Is the system stable? (2) yzi(t), yzs(t) and y(t);

(3) Draw direct form implementation for the system.

?y' (0?)?4, compute in S-domain:

3.(14分)Consider amplitude modulation. A modulated signal is g(t)?x(t)cos?ct. In this

equation

x(t)?Ac[1?m(t)]where

Ac?1 and the modulating signal

m(t)?0.5cos?0t

3??2??10rad/s??2??10rad/s. c0 and

(1) Sketch g(t);

(2) Sketch G(j?), the FS of g(t);

(3)A LTI system has frequency response H(j?)?u(??1990)?u(??1990). If g(t) is the input, determine the output y(t).

Answer: 一、 1、e/2;2、{1,7,15,12;n=-2,-1,0,1};3、10;

111x(t?)?t2; 4、h(t)?eu(t); 5、LTI; 6、low-pass;7、22?2Tmax??0.64e?2j?X(e)?'h(n)??[n?1]h(t)??(t)h(t)?u(t)31?0.8e?j?; 8、1,2,;9、

10、X(k)?{14,0,7,?7j,?7j,7,0;k?0,1...6}

j?

二、1、 2、

x(2?2t)u(?t)y(t)40t

?3n?10?13t

3、h(n)?{h1(n)?h2(n)??(n)}?3u(n?1)*2nu(n)??(n);

??20??1A???,B??00?3???4、0??1,C??1???11??0,D??1???00?0??

111yzs(n)?[?()n?()n?3]u(n)32331n21n()?()22335、y(t)?16?18cost?16cos2t

yzi(n)?三、1、

n?011h(n)?[3()n?2()n]u(n)23s?212H(s)?2h(t)?[e?t?e?4t]u(t)33s?5s?4,2、(1),稳定

111yzs(t)?(?e?t?e?4t)u(t),yzi(t)?4e?t?2e?4t236 (2)

(3) 1F(s)?s?1?5s?12?Y(s)?4

3、(1)g(t)波形如下:

(2)

G(j?) ?()2 (2?) ?()2 ?()2 (2?) ?()2 (3)y(t)=0.5cos(1980?t)

1980? 2000? 2020? ? 1980? 2000? 2020?

北京交通大学信号与系统期末考试试题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4iiks1jkih371qz5d0ci05ej21u0yu00k03_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top