第一范文网 - 专业文章范例文档资料分享平台

SPSS TwoStep Cluster-A First Evaluation

来源:用户分享 时间:2025/8/15 12:21:26 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

SPSSTWOSTEPCLUSTER–AFIRSTEVALUATION?

JohannBacher?,KnutWenzig?,MelanieVogler§

Universit¨atErlangen-N¨urnberg

SPSS11.5andlaterreleasesofferatwostepclusteringmethod.Accordingtotheauthors’

knowledgetheprocedurehasnotbeenusedinthesocialsciencesuntilnow.Thissituationissurprising:Thewidelyusedclusteringalgorithms,k-meansclusteringandagglomerativehierarchicaltechniques,sufferfromwellknownproblems,whereasSPSSTwoStepclusteringpromisestosolveatleastsomeoftheseproblems.Inparticular,mixedtypeattributescanbehandledandthenumberofclustersisautomaticallydetermined.Thesepropertiesarepromising.Therefore,SPSSTwoStepclusteringisevaluatedinthispaperbyasimulationstudy.

Summarizingtheresultsofthesimulations,SPSSTwoStepperformswellifallvariablesarecontinuous.Theresultsarelesssatisfactory,ifthevariablesareofmixedtype.Onereasonforthisunsatisfactory?ndingisthefactthatdifferencesincategoricalvariablesaregivenahigherweightthandifferencesincontinuousvariables.Differentcombinationsofthecategor-icalvariablescandominatetheresults.Inaddition,SPSSTwoStepclusteringisnotabletodetectcorrectlymodelswithnoclustersolutions.Latentclassmodelsshowabetterperfor-mance.Theyareabletodetectmodelswithnounderlyingclusterstructure,theyresultmorefrequentlyincorrectdecisionsandinlessunbiasedestimators.

Keywords:

SPSSTwoStepclustering,mixedtypeattributes,modelbasedclustering,latentclassmodels1INTRODUCTION

SPSS11.5andlaterreleasesofferatwostepclusteringmethod(SPSS2001,2004).Accordingtotheauthors’knowledgetheprocedurehasnotbeenusedinthesocialsciencesuntilnow.Thissituationissurprising:Thewidelyusedclusteringalgorithms,k-meansclusteringandagglomerativehierarchicaltechniques,sufferfromwellknownproblems(forinstance,Bacher2000:223;Everittetal.2001:94-96;Huang1998:288),whereasSPSSTwoStepclusteringpromisestosolveatleastsomeoftheseproblems.Inparticular,mixedtypeattributescanbehandledandthenumberofclustersisautomaticallydetermined.Thesepropertiesarepromising.

?AUTHORS’NOTE:ThestudywassupportedbytheStaedtlerStiftungN¨urnberg(Project:WasleistenClus-”

teranalyseprogramme?EinsystematischerVergleichvonProgrammenzurClusteranalyse“).WewouldliketothankSPSSInc.(TechnicalSupport),JeroenVermuntandDavidWishartforinvaluablecommentsonanearlierdraftofthepaperandBettinaLampmann-EndeforherhelpwiththeEnglishversion.?bacher@wiso.uni-erlangen.de?knut@wenzig.de§vogler.m@gmx.de

1

2SPSSTWOSTEPCLUSTERINGTherefore,SPSSTwoStepclusteringwillbeevaluatedinthispaper.Thefollowingquestionswillbeanalyzed:

1.Howistheproblemofcommensurability(differentscaleunits,differentmeasurementlevels)solved?2.Whichassumptionsaremadeformodelswithmixedtypeattributes?

3.HowwelldoesSPSSTwoStep–especiallytheautomaticdetectionofthenumberofclusters–performinthecaseofcontinuousvariables?4.HowwelldoesSPSSTwoStep–especiallytheautomaticdetectionofthenumberofclusters–performinthecaseofvariableswithdifferentmeasurementlevels(mixedtypeattributes)?ThemodelofSPSSTwoStepclusteringwillbedescribedinthenextsection.Theevaluationwillbedoneinsection3.Section4

2SPSSTWOSTEPCLUSTERINGwhere

??

ξi=?ni

??

1

?i2j+σ?2?ijl)?ijllog(π∑2log(σj)?∑∑πj=1j=1l=1

p

q

mj

pq

mj

??

(2)

??

(3)(4)

1

?2?sjl)?sjllog(π?s2j+σ∑2log(σj)?∑∑πj=1j=1l=1

????

qmjp

1

?2???i,s??jl)???i,s??jllog(π???2i,s??j+σξ??i,s??=?n??i,s??∑log(σj)?∑∑πj=12j=1l=1

ξs=?ns

ξvcanbeinterpretedasakindofdispersion(variance)withinclusterv(v=i,s,??i,s??).ξv

12+σ?v?2consistsoftwoparts.The?rstpart?nv∑2log(σjj)measuresthedispersionofthecon-2wouldbeused,d(i,s)wouldbeexactlythe?vtinuousvariablesxjwithinclusterv.Ifonlyσj

?2decreaseinthelog-likelihoodfunctionaftermergingclusteriands.Thetermσjisaddedto

mqj2=0.Theentropy?n?vjllog(π?v?vjl)isusedavoidthedegeneratingsituationforσv∑j=1∑l=1πj

inthesecondpartasameasureofdispersionforthecategoricalvariables.

Similartoagglomerativehierarchicalclustering,thoseclusterswiththesmallestdistanced(i,s)aremergedineachstep.Thelog-likelihoodfunctionforthestepwithkclustersiscom-putedas

lk=

v=1

∑ξv.

k

(5)

Thefunctionlkisnottheexactlog-likelihoodfunction(seeabove).Thefunctioncanbeinterpretedasdispersionwithinclusters.Ifonlycategoricalvariablesareused,lkistheentropywithinkclusters.

Numberofclusters.Thenumberofclusterscanbeautomaticallydetermined.Atwophaseestimatorisused.Akaike’sInformationCriterion

AICk=?2lk+2rk

whererkisthenumberofindependentparametersorBayesianInformationCriterion

BICk=?2lk+rklogn

(7)(6)

iscomputedinthe?rstphase.BICkorAICkresultinagoodinitialestimateofthemaximumnumberofclusters(Chiuetal.2001:266).ThemaximumnumberofclustersissetequaltonumberofclusterswheretheratioBICk/BIC1issmallerthanc1(currentlyc1=0.04)1forthe?rsttime(personalinformationofSPSSTechnicalSupport).Intable1thisisthecaseforelevenclusters.

ThesecondphaseusestheratiochangeR(k)indistanceforkclusters,de?nedas

R(k)=dk?1/dk,

(8)

1ThevalueisbasedonsimulationstudiesoftheauthorsofSPSSTwoStepClustering.(personalinformationofSPSSTechnicalSupport,2004-05-24)

3

3EVALUATIONwheredk?1isthedistanceifkclustersaremergedtok?1clusters.Thedistancedkisde?nedsimilarly.2Thenumberofclustersisobtainedforthesolutionwhereabigjumpoftheratiochangeoccurs.3

Theratiochangeiscomputedas

R(k1)/R(k2)(11)forthetwolargestvaluesofR(k)(k=1,2,...,kmax;kmaxobtainedfromthe?rststep).Ifthe

ratiochangeislargerthanthethresholdvaluec2(currentlyc2=1.154)thenumberofclustersissetequaltok1,otherwisethenumberofclustersissetequaltothesolutionwithmax(k1,k2).Intable1,thetwolargestvaluesofR(k)arereportedforthreeclusters(R(3)=2.129;largestvalue)andforeightclusters(R(8)=1.952).Theratiois1.091andsmallerthanthethresholdvalueof1.15.Hencethemaximumof3resp.8isselectedasthebestsolution.

Clustermembershipassignment.Eachobjectisassigneddeterministicallytotheclosestclus-teraccordingtothedistancemeasureusedto?ndtheclusters.Thedeterministicassignmentmayresultinbiasedestimatesoftheclusterpro?lesiftheclustersoverlap(Bacher1996:311–314,Bacher2000).

Modi?cation.Theprocedureallowstode?neanoutliertreatment.Theusermustspecifyavalueforthefractionofnoise,e.g.5(=5%).Aleaf(pre-cluster)isconsideredasapotentialoutlierclusterifthenumberofcasesislessthanthede?nedfractionofthemaximumclustersize.Outliersareignoredinthesecondstep.

Output.Comparedtok-meansalgorithm(QUICKCLUSTER)oragglomerativehierarchicaltechniques(CLUSTER),SPSShasimprovedtheoutputsigni?cantly.Anadditionalmodulallowstostatisticallytestthein?uenceofvariablesontheclassi?cationandtocomputecon?dencelevels.

3EVALUATION3.1Commensurability

Clusteringtechniques(k-means-clustering,hierarchicaltechniquesetc.)requirecommensu-rablevariables(forinstance,Fox1982).Thisimpliesintervalorratioscaledvariableswithequalscaleunits.Inthecaseofdifferentscaleunits,thevariablesareusuallystandardizedbytherange(normalizedtotherange[0,1],rangeweighted)orz-transformedtohavezeromeanandunitstandarddeviation(autoscaling,standardscoring,standarddeviationweights).Ifthevariableshavedifferentmeasurementlevels,eitherageneraldistancemeasure(likeGower’sgeneralsimilaritymeasure;Gower1971)maybeusedorthenominal(andordinal)variablesmaybetransformedtodummiesandtreatedasquantitative5(Benderetal.2001;Wishart2003).

2Thedistancesdkcanbecomputedfromtheoutputinthefollowingway:

dklv

=lk?1?lk

=(rvlogn?BICv)/2

or

lv=(2rv?AICv)/2for

v=k,k?1

(9)(10)

However,usingBICorAICresultsindifferentsolutions.

3Theexactdecisionrulesaredescribedvaguelyintherelevantliteratureandthesoftwaredocumentation(SPSS2001;Chiuetal.2001).Therefore,wereporttheexactdecisionrulebasedonpersonalinformationofSPSSTechnicalSupport.Adocumentationintheoutput,like“solutionxwasselectedbecause...”,wouldbehelpfullfortheuser.

4Likec1,c2isbasedonsimulationstudiesoftheauthorsofSPSSTwoStepClustering.(personalinformationofSPSSTechnicalSupport,2004-05-24)

5Theterm“quantitative”willbeusedforintervalorratioscaledvariables.

4

搜索更多关于: SPSS TwoStep Cluster-A First E 的文档
SPSS TwoStep Cluster-A First Evaluation.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4it909joqq8ojit8frcz_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top