第一范文网 - 专业文章范例文档资料分享平台

2020-2021学年浙江省杭州市高考数学一模试卷(文科)及答案解析

来源:用户分享 时间:2025/5/29 1:54:18 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

参考答案与试题解析

一、选择题(共8小题,每小题5分,满分40分)

1.设集合A={x|x2

﹣2x≥0},B={x|﹣1<x<2},则A∩B=( ) A.{x|0≤x≤2}

B.{x|0<x<2}

C.{x|﹣1≤x<0} D.{x|﹣1<x≤0}

【考点】交集及其运算.

【分析】求出A中不等式的解集,再由B,求出两集合的交集即可. 【解答】解:由A中不等式变形得:x(x﹣2)≥0, 解得:x≤0或x≥2,即A={x|x≤0或x≥2}, ∵B={x|﹣1<x<2}, ∴A∩B={x|﹣1<x≤0}, 故选:D. 2.若sinx=

,则cos2x=( ) A.﹣ B.

C.﹣

D.

【考点】二倍角的余弦.

【分析】由条件利用二倍角的余弦公式,求得cos2x的值. 【解答】解:∵sinx=,则cos2x=1﹣2sin2

x=1﹣2?=,

故选:B.

3.某几何体的三视图如图所示(单位:cm),则该几何体的侧面PAB的面积是( )

A. B.2 C. D.

【考点】由三视图求面积、体积.

【分析】由三视图可知:该几何体是一个三棱锥,底面是一个正三角形,后面的侧棱与底面垂直. 【解答】解:由三视图可知:该几何体是一个三棱锥,底面是一个正三角形,后面的侧棱与底面垂直.

∴该几何体的侧面PAB的面积=故选:D.

4.命题:“?x0∈R,x0>sinx0”的否定是( ) A.?x∈R,x≤sinx

B.?x∈R,x>sinx

=

C.?x0∈R,x0<sinx0 D.?x0∈R,x0≤sinx0 【考点】命题的否定.

【分析】根据特称命题的否定是全称命题进行判断即可.

【解答】解:命题是特称命题,则命题的否定是:?x∈R,x≤sinx, 故选:A

5.设函数f(x)=|lnx|,满足f(a)=f(b)(a≠b),则(注:选项中的e为自然对数的底数)( ) A.ab=e B.ab=e C.ab= D.ab=1 【考点】对数函数的图象与性质.

【分析】作出函数f(x)的图象,设a<b,得到0<a<1,b>1,结合对数的运算性质进行求解即可.

x

【解答】解:作出函数f(x)的通项如图, 在若f(a)=f(b)(a≠b), 则设a<b,则0<a<1,b>1, 即|lna|=|lnb|,

则﹣lna=lnb,则lna+lnb=lnab=0, 即ab=1, 故选:D.

6.设抛物线y=ax+bx+c(a>0)与x轴有两个交点A,B,顶点为C,设△=b﹣4ac,∠ACB=θ,则cosθ=( ) A.

B.

C.

D.

2

2

【考点】二次函数的性质.

【分析】根据二次函数的性质结合余弦定理求出cosθ的值即可. 【解答】解:如图示:

∵|AB|===,

∴|AD|=而|CD|=|

|=

∴AC=|AD|+|CD|=

222

+=

∴cosθ=

=1﹣

=1﹣,

=,

故选:A.

7.在Rt△ABC中,∠C是直角,CA=4,CB=3,△ABC的内切圆交CA,CB于点D,E,点P是图中阴影区域内的一点(不包含边界).若

=x

+y

,则x+y的值可以是( )

A.1 B.2 C.4 D.8

【考点】平面向量的基本定理及其意义.

【分析】求出内切圆半径,根据三点共线原理得出x+y分别对于1,2,4,8时P点的轨迹,从而判断出答案.

【解答】解:设圆心为O,半径为r,则OD⊥AC,OE⊥BC,∴3﹣r+4﹣r=5,解得r=1.

2020-2021学年浙江省杭州市高考数学一模试卷(文科)及答案解析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4kdsm1ctc18xzko02xoc4ddq3430jm00ybq_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top