元,第一次打九折出售,价格是原价的90%,再次打八折出售,价格是第一次打九折后的80%。可以先求出第一次打折后的价格,再求出第二次打折后的价格,即为现在的售价。
解:800×90%×80%=720×80%=576(元) 答:最后的几辆车售价是576元。 【课堂作业】
1.(1)爸爸买了一个剃须刀,原价240元,现在只花了八折的钱,比原价便宜了多少钱?
A.打八折怎么理解?是以谁为单位“1”? B.学生试做,讲评。 (2)判断:
①商品打折扣都是以原商品价格为单位“1”,即标准量。( ) ②一件上衣现在打八折出售,就是说比原价降低10%。( ) 2.完成教材第8页“做一做”练习题。 3.完成教材第13页练习二第1~3题。
说明:第1题是一道开放题,有多种可能,应注意给学生提供交流自己想法的机会。练习后可指出“五折”也可以说成“半价”,丰富学生的生活经验。
第2题,要注意指导学生理解9.6元表示的实际含义,它与八折有什么关系。使学生明确9.6元就是打折后比原价少的钱数,它相当于原价的1—80%,在此基础上让学生列出方程或算式。
答案:1.(1)240-240×80%=48(元) (2)① √ ② ×
2.第8页“做一做”:52 73.5 30.8 3.练习二第1题: (1)1.5×50%=0.75(元) 2.4×50%=1.2(元) 1×50%=0.5(元) 3×50%=1.5(元)
(2)(此题答案不唯一)可以买一种面包,也可以两种或两种以上合买。单
独买各种打折后的面包:
①3÷0.75=4(个) 合买各种打折后的面包: ②3÷0.5=6(个)
33÷1.5=2(个)
④3÷1.2=2(个)??0.6(元),再买1个打折后0.5元的面包。 ⑤可以买3个0.5元的面包,买2个0.75元的面包。
可以买1个1.5元的面包,买2个0.75元的面包??第3题:分析:按原价的八折买,优惠价占二折,9.6元占原价的20%,求出原价,用除法计算。解答:9.6÷20%=48(元) 【课堂小结】
通过这节课的学习你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第1课时 折扣
八五折180×85%=153(元)
九折160×(1-90%)=160×10%=16(元)
总结: 解决与折扣有关的实际问题实质上是求一个数的百分之几是多少和已知一个数的百分之几是多少求这个数的问题。在分析折扣时,不要把打折后的价格当作定价,正确区分定价、进价和售价是解决折扣问题的关键。
1.“打折”这个概念,在日常生活中用到,学生比较熟悉。
2.学生对打折的认识还只是停留于感性认识,如打折,学生都知道是便宜了,比原价少了,但是真正能够解释清楚的并不多,对折扣的知识并未真正理解。
第2课时 成数
【教学内容】
成数(教材第9页内容)。 【教学目标】 1.明确成数的含义。
2.能熟练的把成数写成分数、百分数。 3.正确解答有关成数的实际问题。 【重点难点】 1.成数的理解。 2.成数的计算。 【教学准备】 多媒体课件。
【情景导入】
农业收成,经常用“成数”来表示。例如,报纸上写道:“今年我省油菜籽比去年增产二成”??
教师:同学们有留意到类似的新闻报道吗?(学生汇报相关报导) 【新课讲授】
1.介绍成数的含义,会把成数改写成分数,百分数。 (成数:表示一个数是另一个数的十分之几,通称“几成”)
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答) 教师板书:
成数 分数 百分数 二成 十分之二 20% (2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。
2.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”? ②找出数量关系式。
先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%) ③学生独立根据关系式,列式解答。 ④全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时) 方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时) 【课堂作业】
完成教材第9页“做一做”。
答案:15000÷(1+20%)=15000÷1.2=12500(人) 【课堂小结】
这节课我们一起学习了有关成数的知识,你们对成数的知识有哪些了解? 【课后作业】
完成练习册中本课时的练习。
第2课时 成数
相关推荐: