∴假设成立. 故选:B.
7.(2018?温州)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )
A.20 B.24 C.解:设小正方形的边长为x, ∵a=3,b=4, ∴AB=3+4=7,
在Rt△ABC中,AC2+BC2=AB2, 即(3+x)2+(x+4)2=72, 整理得,x2+7x﹣12=0, 解得x=
或x=
(舍去), +3)(
D.
∴该矩形的面积=(故选:B.
+4)=24,
8.(2018?宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形
纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为( )
A.2a B.2b C.2a﹣2b D.﹣2b
解:S1=(AB﹣a)?a+(CD﹣b)(AD﹣a)=(AB﹣a)?a+(AB﹣b)(AD﹣a),
S2=AB(AD﹣a)+(a﹣b)(AB﹣a),
∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)?a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b?AD﹣ab﹣b?AB+ab=b(AD﹣AB)=2b. 故选:B.
9.(2018?温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4 B.3 C.2 D.
解:∵点A,B在反比例函数y=(x>0)的图象上,点A,B的横坐标分别为1,2,
∴点A的坐标为(1,1),点B的坐标为(2,), ∵AC∥BD∥y轴,
∴点C,D的横坐标分别为1,2,
∵点C,D在反比例函数y=(k>0)的图象上, ∴点C的坐标为(1,k),点D的坐标为(2,), ∴AC=k﹣1,BD=∴S△OAC=(k﹣1)×1=
,
,S△ABD=?
×(2﹣1)=
,
∵△OAC与△ABD的面积之和为, ∴
解得:k=3. 故选:B.
10.(2018?嘉兴)某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A.甲 B.甲与丁 C.丙 D.丙与丁 解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,
∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,
∵甲、乙都没有输球,∴甲一定与乙平,
∵丙得分3分,1胜0平,乙得分5分,1胜2平, ∴与乙打平的球队是甲与丁. 故选:B.
11.(2018?湖州)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是( )
,
A.AE=EF B.AB=2DE C.△ADF和△ADE的面积相等 解:如图,连接CF, ∵点D是BC中点, ∴BD=CD,
由折叠知,∠ACB=∠DFE,CD=DF, ∴BD=CD=DF,
∴△BFC是直角三角形, ∴∠BFC=90°, ∵BD=DF, ∴∠B=∠BFD,
∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE, ∴AE=EF,故A正确, 由折叠知,EF=CE, ∴AE=CE, ∵BD=CD,
∴DE是△ABC的中位线, ∴AB=2DE,故B正确, ∵AE=CE, ∴S△ADE=S△CDE,
由折叠知,△CDE≌△△FDE, ∴S△CDE=S△FDE,
∴S△ADE=S△FDE,故D正确,
当AD=AC时,△ADF和△ADE的面积相等
D.△ADE和△FDE的面积相等
相关推荐: