要进一步调整达到最优控制效果。系统启动时,关闭出水口,用于动控制输入控制液体阀,使水位达到满水位的75%,然后打开出水口,同时输入控制液体阀从手动方式切换到自动方式。这种切换由一个输入的数字量控制。
[11]
3.2.1 设计分析
图3-3设计分析示意图
“水塔水位自动控制系统”的控制对象为水泵,容器为水塔或储液罐。水位高度正常情况下控制在C、D之间,如图(a)。当水位在低于C点时,水泵开始进水,如图(b)。当水位高于D点时,水泵停止进水,如图(c)。当水位低于C点并到达B点时就报警,采取手动启动水泵,如图(d)。当水位超过D点并到达E点时上限报警,采取强制停止水泵,
水位从溢流口流出,如图(e)。
3.2.2 可行性试验
图3-4为水塔水位控制器的外观正视图,由电源指示灯、报警确认灯、水位指示灯以及报警确认开关组成。接通电源时,电源指示灯亮,当水塔中水深处于不同位置时,水位指示灯B、C、D、E情况不同。
图3-4水塔水位控制器外观图
①当水位处于B点之下,指示灯B、C、D、E全亮,报警电路开始报警,即下限报警。
②当水位处于B、C之间,指示灯B灭,C、D、E亮,水泵开始进水。 ③当水位处于C、D之间,指示灯B、C灭,C、D亮,保持状态,即保持进水。
④当水位处于D、E之间,指示灯B、C、D灭,E亮,停进状态,即水泵不工作。
⑤当水位处于E点之上,指示灯B、C、D、E全灭,水泵不工作,报警电路开始溢出报警,即上限报警。
⑥报警电路可以手动关闭,只要按下报警确认开关,就可以解除报警的蜂鸣声。此时,报警确认灯亮起。处理完故障时,必须关闭报警确认灯,报警确认电路复位,恢复其监测故障的功能。
3.2.3 可行性分析
此方案采用纯硬件电路设计,避免了软件程序设计中的不稳定因素,提高了实际运用中的可靠性。同时,对于不同类型的液体,此系统
均有良好的兼容性。当水塔中液体改变时,只需要将电位器中的阻值和该液体的阻值调节到一个数量级上就可以很方便的实现此液体的水位控制操作。试验证明,此水塔水位控制器不仅实现了对水塔水位的精确控制,而且,此系统更具有工业生产的实际性。
3.3 水位闭环控制系统
图3-5 供水系统控制原理图
M1、M2—水泵 Y0-Y3—液位开关 F1—手阀 F2—电磁阀
为了精确的实现对水位的控制,必须建立闭环控制系统。根据水塔中的进、出水的水位可以自动控制水泵,使水位处于动态的平衡状态。
供水系统的基本原理如图3-5所示,水位闭环调节原理是:通过在水塔中的三个液压变送器,将水位值变换为4~20 mA电流信号进入PLC,把该信号和PLC中的设定值的程序进行比较,并执行较后程序,通过水泵的开关对水塔中的水位进行自动控制。当PLC出现故障时,还有一套手动控制来进行对水塔水位控制。手动控制采用交流接触器。
上水箱液位低于Y3时,M1、M2同时工作,F2打开。液位上升至Y2
时,M2停止,F2关闭,M1继续工作。液位上升至Y1时,M1也停止。打开F1手阀使上水箱放水,液位下降。当液位又低于Y1时M1起动工作,如F1开度较大下水量大于上水量,使液位继续下降至Y2时,M2启动工作同时F2打开,使上水量大幅上升,保持液位。Y0为下水箱缺水报警开关下水箱液位低于Y0时意味着水泵进水口缺水,此时应自动切断电源并报警。
图3-6 水位闭环控制图
相关推荐: