第一范文网 - 专业文章范例文档资料分享平台

2018年江苏省苏州市张家港市中考数学模拟试卷(5月份)(解析版)

来源:用户分享 时间:2025/6/1 1:36:51 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

②若△ECO∽△BFG,则即

,解得t=2

, ﹣2;

综上所述,当t=2或2

﹣2时,以O、C、E为顶点的三角形与△BFG相似;

(3)如图,过点G作GH∥x轴,交AB于H, 设直线AB的解析式为y=kx+b,则

,解得

∴y=﹣2x+12, ∵G(

,4﹣

),将y=4﹣t代入y=﹣2x+12,可得x=4+,

∴H(4+,4﹣t), ∴GH=|4+﹣

|,

|×4=2|4﹣

|,

∴S△ABG=GH×BD=|4+﹣又∵△ABG 的面积为, ∴2|4﹣

|=,

(舍去),

解得t=或t=

此时,点G的坐标为(故答案为:

),CG==.

28.(10分)如图1,抛物线y=ax2+(a+2)x+2(a≠0)与x轴交于点A(4,0),

与y轴交于点B,在x轴上有一动点P(m,0)(0<m<4),过点P作x轴的垂线交直线AB于点N,交抛物线于点M.

(1)求a的值;

(2)若PN:MN=1:3,求m的值;

(3)如图2,在(2)的条件下,设动点P对应的位置是P1,将线段OP1绕点O逆时针旋转得到OP2,旋转角为α(0°<α<90°),连接AP2、BP2,求AP2+BP2的最小值. 【解答】解:

(1)∵A(4,0)在抛物线上, ∴0=16a+4(a+2)+2,解得a=﹣;

(2)由(1)可知抛物线解析式为y=﹣x2+x+2,令x=0可得y=2, ∴OB=2, ∵OP=m, ∴AP=4﹣m, ∵PM⊥x轴, ∴△OAB∽△PAN, ∴

=

,即=

∴PN=(4﹣m), ∵M在抛物线上, ∴PM=﹣m2+m+2, ∵PN:MN=1:3,

∴PN:PM=1:4,

∴﹣m2+m+2=4×(4﹣m), 解得m=3或m=4(舍去); (3)在y轴上取一点Q,使

=,如图,

由(2)可知P1(3,0),且OB=2, ∴

=,且∠P2OB=∠QOP2,

∴△P2OB∽△QOP2, ∴

=,

∴当Q(0,)时QP2=BP2, ∴AP2+BP2=AP2+QP2≥AQ,

∴当A、P2、Q三点在一条线上时,AP2+QP2有最小值, ∵A(4,0),Q(0,), ∴AQ=

二、填空题:(本大题共1小题,每小题3分,共24分.把你的答案填在答题卷相应的横线上) 11.(3分)若代数式

有意义,则x满足的条件是 x≥2 .

=

,即AP2+BP2的最小值为

【解答】解:依题意得:x﹣2≥0, 解得x≥2. 故答案是:x≥2.

2018年江苏省苏州市张家港市中考数学模拟试卷(5月份)(解析版).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4mauk7wai13x5if1klmb9gaib47veh009oe_7.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top