第一范文网 - 专业文章范例文档资料分享平台

2020年中考数学压轴题专项训练 反比例函数的综合

来源:用户分享 时间:2025/5/28 18:29:54 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

①当一次函数y=﹣x+b的图象经过点A时,直接写出△DCE内的整点的坐标; ②若△DCE内的整点个数恰有6个,结合图象,求b的取值范围.

解:(1)依题意知:B(﹣2,2), ∴反比例函数解析式为y=﹣. ∴k的值为﹣4;

(2)①∵一次函数y=﹣x+b的图象经过点A, ∴b=2,

∴一次函数的解析式为y=﹣x+2, 解∴D(1﹣

得,,1+

,),E(2,0),

∴△DCE内的整点的坐标为(﹣1,1),(﹣1,2),(0,1);

②当b=2时,△DCE内有3个整点,当b=3时,△DCE内有6个整点, ∴b的取值范围是2<b≤3.

8.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6). (1)求k的值;

(2)已知点P(a,﹣2a)(a<0),过点P作平行于x轴的直线,交直线y=﹣2x﹣2于点M,交函数y=(x<0)的图象于点N. ①当a=﹣1时,求线段PM和PN的长;

②若PN≥2PM,结合函数的图象,直接写出a的取值范围.

11

解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6). ∴k=﹣1×6=﹣6.

(2)①当a=﹣1时,点P的坐标为(﹣1,2).

∵直线y=﹣2x﹣2,反比例函数的解析式为y=﹣,PN∥x轴, ∴把y=2代入y=﹣2x﹣2,求得x=﹣2,代入y=﹣求得x=﹣3, ∴M(﹣2,2),N(﹣3,2), ∴PM=1,PN=2.

②∵当a=﹣1或a=﹣3时,PN=2PM,

∴根据图象PN≥2PM,a的取值范围为a≤﹣3或﹣1≤a<0.

9.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5. (1)求反比例函数y=和一次函数y=kx+b的表达式; (2)连结AD,求∠DAC的正弦值.

12

解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3), ∴OA=5,OC=BD=2,OB=3,

又∵点C在y轴负半轴,点D在第二象限,

∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3). ∵点D(﹣2,3)在反比例函数∴a=﹣2×3=﹣6, ∴反比例函数的表达式为

的图象上,

将A(5,0)、C(0,﹣2)代入y=kx+b,得

解得:,

∴一次函数的表达式为.

(2)∵OA=BC=5,OC=BD=2,∠DBC=∠AOC=90°, ∴△BDC≌△OCA(SAS), ∴∠DCB=∠OAC,DC=CA, ∴∠DCA=90°,

∴△DCA是等腰直角三角形, ∴∠DAC=45°, ∴

10.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,

OB=4.连接OA、AB,且OA=AB=2

(1)求k的值;

13

(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C. ①连接AC,求△ABC的面积; ②在图上连接OC交AB于点D,求

的值.

解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.

∵OA=AB,AH⊥OB, ∴OH=BH=OB=2, ∴AH=

=6,

∴点A的坐标为(2,6).

∵A为反比例函数y=图象上的一点, ∴k=2×6=12;

(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,

∴BC=

=3.

∵AH⊥OB, ∴AH∥BC,

∴点A到BC的距离=BH=2, ∴S△ABC=×3×2=3;

14

②∵BC⊥x轴,OB=4,点C在反比例函数y=∴BC=

=3.

上,

∵AH∥BC,OH=BH, ∴MH=BC=, ∴AM=AH﹣MH=. ∵AM∥BC, ∴△ADM∽△BDC, ∴

=.

11.如图,反比例函数y=的图象与一次函数y=x+1的图象相交于点A(2,3)和点B. (1)求反比例函数的解析式和点B的坐标; (2)连接OA,OB,求△AOB的面积.

(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量x的取值范围.

解:(1)把A(2,3)代入∴k=6.

∴反比例函数的解析式为

得,

联立解得或,

∴点B的坐标为(﹣3,﹣2). (2)设直线AB与y轴交于点C. 可知C点的坐标为(0,1), ∴OC=1.

15

2020年中考数学压轴题专项训练 反比例函数的综合.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4mqyu7fd3s0ne2d1fovz9epjx24qp9012sd_3.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top