第一范文网 - 专业文章范例文档资料分享平台

数值分析课程设计-多项式插值的振荡现象matlab

来源:用户分享 时间:2025/12/20 2:56:29 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

数值分析 课程设计

多项式插值的振荡现象

(姓名) (学号)

指导教师

学院名称 专 业 名 称 提交日期

2012年6月

一、 问题的提出

考虑在一个固定区间上用插值逼近一个函数。显然,Lagrange插值中使用的节点越多,插值多项式的次数就越高。我们自然关心插值多项式增加时,Ln(x)是否也更加靠近被逼近的函数。龙格(Runge)给出的一个例子是极著名并富有启发性的。设区间[-1,1]上的函数

f(x)?1 21?25x考虑区间[-1,1]的一个等距划分,节点为

-可编辑修改-

xi??1?2i,ni?0,1,2,L,n

则拉格朗日插值多项式为

Ln(x)??1a(x) 2i1?25xi?0in其中的ai(x),i=0,1,2,…,n是n次Lagrange插值基函数。

二、 实验内容

研究以下三个函数在各自区间上运用不同的划分

1、f(x)?1,x?[?1,1]

1?25x2x2、h(x)?,x?[?5,5] 41?x3、g(x)?arctanx,x?[?5,5]

运用在区间[-p,p]上等距划分(p>0),节点为

xi??p?2i,ni?0,1,2,L,n

以x0,x1,…,xn为插值节点构造上述各函数的Lagrange插值多项式。 运用区间[a,b]上切比雪夫(Chebychev)点的定义为

xk??(2k?1)?b?ab?a?cos?22?2(n?1)??,k?1,2,L,n?1 ?以x1,x2,…,xn+1为插值节点构造上述各函数的Lagrange插值多项式,比较其结果。

并分别比较两种划分方法,增加节点数,最大误差的变化。

三、 实验结果及分析

(一) 等距划分

对于函数f(x)?1,x?[?1,1]来说,使用等距划分

1?25x2-可编辑修改-

其中绿色点线代表误差,红色划线代表Lagrange插值多项式,蓝色实线代表原函数。

可见对于等距划分来说节点数越多,最大误差越大,可是越靠近中间的误差

-可编辑修改-

越少。越接近两个端点的误差越大。当节点数很大时,最大误差的来源只与靠近两个端点的误差有关。

例如:n=20时

-可编辑修改-

数值分析课程设计-多项式插值的振荡现象matlab.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4oqmo2k6ll1h1yk7phhy1xkfw968ko01ax6_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top