B.Nagarajanetal./Engineering5(2019)702–720717optionforintegrationwithmicroSLMtodevelopahybridsystem.EitherthesamelasersourceoradifferentlasersourcecanbeusedwithintheexistingSLMsystem.Nevertheless,itshouldbeacknowledgedthatevery?nishingtechniquehasitsownadvan-tagesandlimitations,andselectinganidealtechniquedependsupontheinitialconditionsoftheSLM-fabricatedpartandthe?n-ishingrequirements.Therefore,itisrationaltoimprovethecapabil-itiesoftheSLMtechniquetofabricatefeatureswitha?nesurface?nish,inordertoeliminatetheneedforanysecondary?nishing.6.PotentialapplicationsMicroAM—especiallymicroSLM—hasfoundincreasingapplica-tioninthefabricationofprecisiondevicesandcomponentsinsev-eral?elds.Micro?uidicdevicescanbeappliedinthe?eldsofcellbiology,biomedicalscience,andclinicaldiagnostics[145].ThedirectAMofmicro?uidicdeviceshasbeenattempted,butthepro-ductivityofthismethodwasfoundtobemuchlowerthanthatoftypicalinjectionmoldingtechniques[146,147].Themostcommontechniquesforfabricatingmicro?uidicdevicesareinjectionmold-ingandhotembossing[148,149].Thesetechniquesrequireamas-termoldortoolinserttoreplicatethefeaturesontothesubstrate.Mastermoldsformicro?uidicsarecommonlyfabricatedusinglithography,electroplatingandmoulding(LIGA,whichisaGermanacronymforLithographie,Galvanoformung,Abformung)andLIGA-likeprocesses[150,151].However,thesetechniqueshavematerialanddesignlimitations.Ametallicmastermoldcanbefabricatedusingtheelectroformingofnickel,butthehardnessofthemoldisnotsuf?cient[152,153].Thestrengthofthemicro-moldsmanufac-turedbythesetechniquesrequiresimprovement.AprecisemicroAMtechniqueforfabricatingmetallicmicro-moldswillimprovethetoollifeand,hence,theproductivity.Thesametechniquecanbeusedtoproducehigh-aspect-ratiomicrostructures,whichareincreasingly?ndingapplicationinMEMS[154].Royetal.[44]usedamicroSLSprocesstofabricateelectricalinterconnectentitiesanddielectricbuildupinordertoassembleintegratedcircuit(IC)pack-ages.Silverelectrodesandsilverinterconnectswereprintedonpre-fabricatedtracestobridgetwo?exiblesubstrates[16].Anotherpossible?eldformicroAMapplicationisdentistry.Atpresent,inadditiontothemostcommonstereolithographyanddigitallightprojection(DLP),SLMandSLSareusedindentistry[155,156].Dentalbridgesandcrowns,dentalimplants,partialden-tures,andmodelcastingsaresomeofthepotentialapplicationsofmicroAMinthedentalindustry.Overthepastdecade,therehavebeenconsistentattemptsinthejewelryindustrytomanufacturejewelryusingAM.This?eldiscontinuingtoevolve,asalmostallthemajorequipmentmakersforAMhavesteppeduptheireffortstouseAMtofabricatepre-ciousmetals,suchasgold,platinum,andpalladiumalloys[157].InadditiontocommonAMbene?tssuchasnear-netshapefabrica-tion,decreasedmaterialwastage,andfasteroverallprocesscycletimeforsmallbatches,thespeci?cattractivefactorsforjewelryaretheabilityofmicroAMtofabricatethin-wall,?ligree,meshed,andlightweightparts,therebyenhancingthedesignfreedomandaesthetics.Anumberofstudiesfromjewelrymanufacturers[158,159]emphasizedthatdespitethecurrentlimitations,SLMwillcoexistwithtraditionalcastinginordertorealizedesignver-satilityandcostsavings.Hirtetal.[16]envisionedthatdevicesandsensorscouldbedirectlyprintedontoexistingtechnologieswithintheaeronautical,automotive,medical,andopticalindustries.Thefabricationofcomponentswithmicroscaleornanoscaleresolutionhelpstoachieveacontrolledmicrostructure.Precisemicrostructurecontrolcanbeexploitedtoimprovethemechanicalstrengthandtribolog-icalpropertiesofcomponentsfabricatedusingAM.7.ConcludingremarksThispapersystematicallyreviewstheuseoftheSLMtechniquetoachievemicroscalefeaturesonmetallicmaterials.MicroSLMisdis-tinguishedfromconventionalSLMbythreefactors:laserspotsize,powderparticlesize,andlayerthickness.TheavailableresearchstudiesonmicroSLMsuccessfullydemonstratethefeasibilityoffab-ricatingfeatureswithamicroscaleresolutionondifferentmaterialsincludingpolymers,ceramics,andmetals.CurrentmicroSLMsys-temsachieveaminimumfeatureresolutionof15lm,minimumsur-faceroughnessof1lm,andmaximumpartdensityof99.3%.Giventhelimitedacademicresearchinthis?eld,itissurprisingthatthereareafewcommercialmicroSLMsystemsonthemarketalready.Commercialsystemsachieveaminimumspotsizeandlayerthick-nessof20and1lm,respectively.Onemajorlimitationoftheexist-ingliteratureisthatnoneoftheworkshaveattemptedtoinvestigatethephysicalpropertiesandmicrostructureofthefabricatedparts,whichmakesitdif?culttocomparetheSLMprocessacrossscales.InordertodevelopmicroSLMtechnology,certainmodi?cationstoSLMsystemsarenecessary,suchasadjustingtheopticalsystem,powderrecoating,andthedrivesforthepowderdispensingandbuildstage.Thecurrentlimitationstoobtainingathinandhomogeneouspowderlayeraremainlythepowderpropertiesandpowder-recoatingsystem.Theliteratureimpliesthatthecurrentpowder-recoatingmethodology,whichispredominantlyperformedbymeansofabladeorroller,isunsuitableforhandling?nepowders.Thispaperreviewsanumberofpotentialdrypowderdispensingmethodsfortheirfeasibilityinpowder-bedAMsystems.Ofthevibratoryandelectrostatic-basedpowder-dispensingmethodsthathavealreadybeenimplementedandtestedinAMsystems,electro-statictechniquesseemtobemostpromisingintermsofthecoatingcycletime.AneffectivestrategyformicroSLMwouldbetointegrateallthesubsystems—suchaspowderdispensing,collection,andpow-dersieving—andhaveaclosed-loopfeedbacksystem.Thesurface-?nishingtechniquesusedforSLMpartshavebeenreviewedindetail.Althoughmostoftheprocessescanachieveasur-faceroughnessoflessthan1lm,theselectionofanidealprocessformicroSLMisbasedonanumberoffactors,includingpartgeometry,featureresolution,and?nishingrequirement.Theliteraturerevealsthatabrasiveblastingiscurrentlyacommon?nishingtechniqueforminiatureparts.Inanapproachtowardhybridprocessing,theuseoflaserpolishingasthesecondary?nishingtechniqueformicroSLMappearstobemorepracticalthanothertechniques.NotlimitedtoSLM/SLS,thecommonfactorsthatrestricttheapplicationofmicroAMare?nitepowderparticlesize,lowcon-?nementoftheheatingzoneduetohighheatdissipationinmet-als,dif?cultyincontrollingtheresolution,surfaceroughness,powderhandling,andpartremoval[14,16].Thesefactorshighlighttheneedtodevelopnewsystemswithaninnovativeapproachinpowderdistributionandpost-processingofthebuiltparts.ThefuturedirectionofmicroSLMshouldbefocusedontwoaspects:equipment-relatedandprocess-relatedfactors.Asystemshouldbedesignedtohandlenanoscalemetalpowders,whichtendtoagglomerateeasily.Themajorfocusshouldbeondevelopinganinnovativepowder-recoatingsystemthatcanachievehomogenouspowderlayerswithsub-micrometerscalethickness,whilesimulta-neouslynotcompromisingontherecoatingspeed.Regardingpro-cessknowledge,morestudiesarerequiredinordertounderstandtheinteractionbetweennanoscalepowderparticlesandthelaserbeam.FurtherunderstandingofthemicrostructureandmechanicalpropertiesofpartsfabricatedusingmicroSLMareneededduetothecurrentlimitednumberofstudies.Consideringthegrowingapplicationformetallicmicropartswith?nefeaturesinvarious?elds,includingprecisionengineering,biomedicalscience,den-tistry,andjewelry,furtherimprovementinmicroSLMwillexpandthescopeofSLMorevenofAMingeneral.718B.Nagarajanetal./Engineering5(2019)702–720AcknowledgementsTheauthorswouldliketoacknowledge?nancialsupportfromtheScienceandEngineeringResearchCouncil,AgencyforScience,TechnologyandResearch(A*STAR),Singapore(1426800088).CompliancewithethicsguidelinesBalasubramanianNagarajan,ZhihengHu,XuSong,WeiZhai,andJunWeideclarethattheyhavenocon?ictofinterestor?nan-cialcon?ictstodisclose.References[1]QinY,BrockettA,MaY,RazaliA,ZhaoJ,HarrisonC,etal.Micro-manufacturing:research,technologyoutcomesanddevelopmentissues.IntJAdvManufTechnol2010;47(9–12):821–37.[2]AltingL,KimuraF,HansenHN,BissaccoG.Microengineering.CIRPAnn2003;52(2):635–57.[3]JainVK,SidparaA,BalasubramaniamR,LodhaGS,DhamgayeVP,ShuklaR.Micromanufacturing:areview—partI.ProcInstMechEngPartB2014;228(9):973–94.[4]GaoW,ZhangY,RamanujanD,RamaniK,ChenY,WilliamsCB,etal.Thestatus,challenges,andfutureofadditivemanufacturinginengineering.Comput-AidedDes2015;69:65–89.[5]HuangY,LeuMC,MazumderJ,DonmezA.Additivemanufacturing:currentstate,futurepotential,gapsandneeds,andrecommendations.JManufSciEng2015;137(1):014001.[6]GuDD,MeinersW,WissenbachK,PopraweR.Laseradditivemanufacturingofmetalliccomponents:materials,processesandmechanisms.IntMaterRev2012;57(3):133–64.[7]SamesWJ,ListFA,PannalaS,DehoffRR,BabuSS.Themetallurgyandprocessingscienceofmetaladditivemanufacturing.IntMaterRev2016;61(5):315–60.[8]ObikawaT,YoshinoM,ShinozukaJ.Sheetsteellaminationforrapidmanufacturing.JMaterProcessTechnol1999;89–90:171–6.[9]HerzogD,SeydaV,WyciskE,EmmelmannC.Additivemanufacturingofmetals.ActaMater2016;117:371–92.[10]GibsonI,RosenD,StuckerB.Binderjetting.In:Additivemanufacturingtechnologies:3Dprinting,rapidprototyping,anddirectdigitalmanufacturing.NewYork:Springer;2015.p.205–18.[11]FayazfarH,SalarianM,RogalskyA,SarkerD,RussoP,PaserinV,etal.Acriticalreviewofpowder-basedadditivemanufacturingofferrousalloys:processparameters,microstructureandmechanicalproperties.MaterDes2018;144:98–128.[12]VilarR.Lasercladding.JLaserAppl1999;11(2):64–79.[13]KruthJP,BadrossamayM,YasaE,DeckersJ,ThijsL,VanHumbeeckJ.Partandmaterialpropertiesinselectivelasermeltingofmetals.In:Proceedingsofthe16thInternationalSymposiumonElectromachining;2010Apr19–23;Shanghai,China;2010.p.3–14.[14]VaeziM,SeitzH,YangS.Areviewon3Dmicro-additivemanufacturingtechnologies.IntJAdvManufTechnol2013;67(5–8):1721–54.[15]EngstromDS,PorterB,PaciosM,BhaskaranH.Additivenanomanufacturing—areview.JMaterRes2014;29(17):1792–816.[16]HirtL,ReiserA,SpolenakR,ZambelliT.Additivemanufacturingofmetalstructuresatthemicrometerscale.AdvMater2017;29(17):1604211.[17]BertschA,RenaudP.Microstereolithography.In:BártoloP,editor.Stereolithography.Boston:Springer;2011.p.81–112.[18]KoSH,ChungJ,HotzN,NamKH,GrigoropoulosCP.Metalnanoparticledirectinkjetprintingforlow-temperature3Dmicrometalstructurefabrication.JMicromechMicroeng2010;20(12):125010.[19]GokuldossPK,KollaS,EckertJ.Additivemanufacturingprocesses:selectivelasermelting,electronbeammeltingandbinderjetting-selectionguidelines.Materials(Basel)2017;10(6):672.[20]RegenfussP,EbertR,ExnerH.Lasermicrosintering—aversatileinstrumentforthegenerationofmicroparts.LaserTechJ2007;4(1):26–31.[21]DebRoyT,WeiHL,ZubackJS,MukherjeeT,ElmerJW,MilewskiJO,etal.Additivemanufacturingofmetalliccomponents—process,structureandproperties.ProgMaterSci2018;92:112–224.[22]AlMangourB,GrzesiakD,YangJM.SelectivelasermeltingofTiB2/316Lstainlesssteelcomposites:therolesofpowderpreparationandhotisostaticpressingpost-treatment.PowderTechnol2017;309:37–48.[23]YakoutM,ElbestawiMA,VeldhuisSC.Onthecharacterizationofstainlesssteel316Lpartsproducedbyselectivelasermelting.IntJAdvManufTechnol2018;95(5–8):1953–74.[24]YasaE,KruthJP.Microstructuralinvestigationofselectivelasermelting316Lstainlesssteelpartsexposedtolaserre-melting.ProcediaEng2011;19:389–95.[25]TuchoWM,LysneVH,Austb?H,Sjolyst-KvernelandA,HansenV.InvestigationofeffectsofprocessparametersonmicrostructureandhardnessofSLMmanufacturedSS316L.JAlloysCompd2018;740:910–25.[26]NguyenQB,LuuDN,NaiSML,ZhuZ,ChenZ,WeiJ.TheroleofpowderlayerthicknessonthequalityofSLMprintedparts.ArchCivMechEng2018;18(3):948–55.[27]CherryJA,DaviesHM,MehmoodS,LaveryNP,BrownSGR,SienzJ.Investigationintotheeffectofprocessparametersonmicrostructuralandphysicalpropertiesof316Lstainlesssteelpartsbyselectivelasermelting.IntJAdvManufTechnol2015;76(5–8):869–79.[28]LiR,LiuJ,ShiY,DuM,XieZ.316Lstainlesssteelwithgradientporosityfabricatedbyselectivelasermelting.JMaterEngPerform2010;19(5):666–71.[29]ZhongY,LiuL,WikmanS,CuiD,ShenZ.Intragranularcellularsegregationnetworkstructurestrengthening316Lstainlesssteelpreparedbyselectivelasermelting.JNuclMater2016;470:170–8.[30]EmmelmannC,KranzJ,HerzogD,WyciskE.Laseradditivemanufacturingofmetals.In:SchmidtV,BelegratisMR,editors.Lasertechnologyinbiomimetics:basicsandapplications.Berlin:Springer;2013.p.143–62.[31]FischerJ,KniepkampM,AbeleE.Microlasermelting:analysesofcurrentpotentialsandrestrictionsfortheadditivemanufacturingofmicrostructures.In:Proceedingsofthe25thAnnualInternationalSolidFreeformFabrication(SFF)Symposium;2014Aug4–6;Austin,TX,USA;2014,p.22–35.[32]RegenfussP,HartwigL,Kl?tzerS,EbertR,ExnerH.Micropartsbyanovelmodi?cationofselectivelasersintering.In:ProceedingsofRapidPrototypingandManufacturingConference;2003May12–15;Chicago,IL,USA;2003.p.1–7.[33]RegenfussP,StreekA,HartwigL,Kl?tzerS,BrabantT,HornM,etal.Principlesoflasermicrosintering.RapidPrototypingJ2007;13(4):204–12.[34]RegenfussP,HartwigL,Kl?tzerS,EbertR,BrabantT,PetschT,etal.Industrialfreeformgenerationofmicrotoolsbylasermicrosintering.RapidPrototypingJ2005;11(1):18–25.[35]StreekA,RegenfussP,EbertR,ExnerH;FachbereichMPILaserapplikationszentrum.Lasermicrosintering—aqualityleapthroughimprovementofpowderpacking.In:Proceedingsofthe19thAnnualInternationalSolidFreeformFabricationSymposium;2008Aug13–15;Austin,TX,USA;2008.p.297–308.[36]ExnerH,HornM,StreekA,UllmannF,HartwigL,Regenfu?P,etal.Lasermicrosintering:anewmethodtogeneratemetalandceramicpartsofhighresolutionwithsub-micrometerpowder.VirtualPhysPrototyp2008;3(1):3–11.[37]GiesekeM,SenzV,VehseM,FiedlerS,IrsigR,HustedtM,etal.Additivemanufacturingofdrugdeliverysystems.BiomedTech2012;57(Suppl1):398–401.[38]NoelkeC,GiesekeM,KaierleS.Additivemanufacturinginmicroscale.JLaserAppl2013;2013(1):1–6.[39]DudziakS,GiesekeM,HaferkampH,BarcikowskiS,KrachtD.Functionalityoflaser-sinteredshapememorymicro-actuators.PhysProcedia2010;5:607–15.[40]YadroitsevI,BertrandP.Selectivelasermeltinginmicromanufacturing.In:KatalinicB,editor.AnnalsofDAAAMfor2010&Proceedingsofthe21stInternationalDAAAMSymposium.Vienna:DAAAMInternational;2010.[41]AbeleE,KniepkampM.Analysisandoptimisationofverticalsurfaceroughnessinmicroselectivelasermelting.SurfTopogrMetrolProp2015;3:034007.[42]KniepkampM,FischerJ,AbeleE.Dimensionalaccuracyofsmallpartsmanufacturedbymicroselectivelasermelting.In:BourellDL,editor.Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.1530–7.[43]RobertsRC,TienNC.3Dprintedstainlesssteelmicroelectrodearrays.In:Proceedingsof201719thInternationalConferenceonSolid-StateSensors,ActuatorsandMicrosystems;2017June18–22;Kaohsiung,China.NewYork:IEEE;2017.p.1233–6.[44]RoyN,FoongC,CullinanM.Designofamicro-scaleselectivelasersinteringsystem.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.1495–508.[45]RoyN,CullinanM.l-SLSofmetals:designofthepowderspreader,powderbedactuatorsandopticsforthesystem.In:Proceedingsofthe26thAnnualInternationalSolidFreeformFabricationSymposium;2015Aug10–12;Austin,TX,USA;2015.p.134–55.[46]RoyN,DibuaOG,CullinanM.Effectofbedtemperatureonthelaserenergyrequiredtosintercoppernanoparticles.JOM2018;70(3):401–6.[47]KeL,ZhuH,YinJ,WangX.EffectsofpeaklaserpoweronlasermicrosinteringofnickelpowderbypulsedNd:YAGlaser.RapidPrototypingJ2014;20(4):328–35.[48]RegenfussP,StreekA,UllmannF,KühnC,HartwigL,HornM,etal.Lasermicrosinteringofceramicmaterials:part2.Interceram2008;57(1):6–9.[49]YadroitsevI,BertrandP,SmurovI.Parametricanalysisoftheselectivelasermeltingprocess.ApplSurfSci2007;253(19):8064–9.[50]LiveraniE,ToschiS,CeschiniL,FortunatoA.Effectofselectivelasermelting(SLM)processparametersonmicrostructureandmechanicalpropertiesof316Lausteniticstainlesssteel.JMaterProcessTechnol2017;249:255–63.[51]CollinsPC,BriceDA,SamimiP,GhamarianI,FraserHL.Microstructuralcontrolofadditivelymanufacturedmetallicmaterials.AnnuRevMaterRes2016;46(1):63–91.[52]Al-BermaniSS.AninvestigationintomicrostructureandmicrostructuralcontrolofadditivelayermanufacturedTi-6Al-4Vbyelectronbeammelting[dissertation].Shef?eld:UniversityofShef?eld;2011.[53]PhanMAL,FraserD,GuliziaS,ChenZW.Horizontalgrowthdirectionofdendriticsolidi?cationduringselectiveelectronbeammeltingofaCo-basedalloy.MaterLett2018;228:242–5.B.Nagarajanetal./Engineering5(2019)702–720719[54]McLouthTD,BeanGE,WitkinDB,SitzmanSD,AdamsPM,PatelDN,etal.TheeffectoflaserfocusshiftonmicrostructuralvariationofInconel718producedbyselectivelasermelting.MaterDes2018;149:205–13.[55]HuZ,NagarajanB,SongX,HuangR,ZhaiW,WeiJ.FormationofSS316Lsingletracksinmicroselectivelasermelting:surface,geometry,anddefects.AdvMaterSciEng2019;2019:1–9.[56]LewandowskiJJ,Sei?M.Metaladditivemanufacturing:areviewofmechanicalproperties.AnnuRevMaterRes2016;46:151–86.[57]SuryawanshiJ,PrashanthKG,RamamurtyU.Mechanicalbehaviorofselectivelasermelted316Lstainlesssteel.MaterSciEngA2017;696:113–21.[58]MohdYusufSYB,GaoN.In?uenceofenergydensityonmetallurgyandpropertiesinmetaladditivemanufacturing.MaterSciTechnol2017;33(11):1269–89.[59]SongB,ZhaoX,LiS,HanC,WeiQ,WenS,etal.Differencesinmicrostructureandpropertiesbetweenselectivelasermeltingandtraditionalmanufacturingforfabricationofmetalparts:areview.FrontMechEng2015;10(2):111–25.[60]GharbiO,JiangD,FeenstraDR,KairySK,WuY,HutchinsonCR,etal.OnthecorrosionofadditivelymanufacturedaluminiumalloyAA2024preparedbyselectivelasermelting.CorrosSci2018;143:93–106.[61]AmatoKN,GaytanSM,MurrLE,MartinezE,ShindoPW,HernandezJ,etal.MicrostructuresandmechanicalbehaviorofInconel718fabricatedbyselectivelasermelting.ActaMater2012;60(5):2229–39.[62]ZhangH,ZhuH,NieX,QiT,HuZ,ZengX.FabricationandheattreatmentofhighstrengthAl-Cu-Mgalloyprocessedusingselectivelasermelting.In:GuB,HelvajianH,PiquéA,editors.ProceedingsoftheSPIE9738,Laser3DManufacturingIII;2016Feb13–18;SanFrancisco,CA,USA;2016.[63]DMP60series[Internet].Chemnitz:3DMicroPrintGmbH;c2019[cited2018Jun30].Availablefrom:http://www.3dmicroprint.com/products/machines/dmp60-series/.[64]GebhardtA,SchmidtFM,H?tterJS,SokallaW,SokallaP.Additivemanufacturingbyselectivelasermeltingtherealizerdesktopmachineanditsapplicationforthedentalindustry.PhysicsProcedia2010;5:543–9.[65]PreciousM080[Internet].Krailling:EOSGmbHElectroOpticalSystems;[cited2018Jun30].Availablefrom:https://www.eos.info/precious-m-080.[66]Mysint100,3Dselectivelaserfusionprinterformetalpowder[Internet].Vicenza:SismaSpA;[cited2018Jun30].Availablefrom:http://www.sisma.com/eng/industry/prodotti/additive-manufacturing/laser-metal-fusion/mysint100.php.[67]TruPrint1000[Internet].Taicang:TRUMPF;c2019[cited2018Jun30].Availablefrom:http://www.trumpf-laser.com/en/products/3d-printing-systems/truprint-series-1000.html.[68]DirectMetalPrinters[Internet].3DSystems,Inc;c2017[cited2018Jun30].Availablefrom:https://www.3dsystems.com/sites/default/?les/2017-01/3D-Systems_DMP_Tech_Specs_USEN_2017.01.23_WEB.pdf.[69]EbertR,ExnerH,HartwigL,KeiperB,Kl?tzerS,RegenfussP,inventors;3D-MICROMACAG,assignee.Methodanddeviceforproducingminiatureobjectsormicrostructuredobjects.UnitedStatespatentUS20070145629A1.2007Jun28.[70]MaM,WangZ,ZengX.Acomparisononmetallurgicalbehaviorsof316Lstainlesssteelbyselectivelasermeltingandlasercladdingdeposition.MaterSciEngA2017;685:265–73.[71]LiuB,WildmanR,TuckC,AshcroftI,HagueR.Investigationtheeffectofparticlesizedistributiononprocessingparametersoptimisationinselectivelasermeltingprocess.In:Proceedingsofthe22ndAnnualInternationalSolidFreeformFabricationSymposium;2011Aug8–10;Austin,TX,USA;2011.p.227–38.[72]MakoanaN,YadroitsavaI,M?llerH,YadroitsevI.Characterizationof17–4PHsingletracksproducedatdifferentparametricconditionstowardsincreasedproductivityofLPBFsystems—theeffectoflaserpowerandspotsizeupscaling.Metals2018;8(7):475.[73]HelmerHE,K?rnerC,SingerRF.Additivemanufacturingofnickel-basedsuperalloyInconel718byselectiveelectronbeammelting:processingwindowandmicrostructure.JMaterRes2014;29(17):1987–96.[74]BeanGE,WitkinDB,McLouthTD,PatelDN,ZaldivarRJ.EffectoflaserfocusshiftonsurfacequalityanddensityofInconel718partsproducedviaselectivelasermelting.AdditManuf2018;22:207–15.[75]VerhaegheG,HiltonP.Theeffectofspotsizeandlaserbeamqualityonweldingperformancewhenusinghigh-powercontinuouswavesolid-statelasers.In:Proceedingsofthe24thInternationalCongressonApplicationsofLasers&Electro-Optics;2005Oct31–Nov3;Miami,FL,USA;2005.p.264–71.[76]SuttonAT,KriewallCS,LeuMC,NewkirkJW.Powdersforadditivemanufacturingprocesses:characterizationtechniquesandeffectsonpartproperties.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.1004–30.[77]SpieringsAB,VoegtlinM,BauerT,WegenerK.Powder?owabilitycharacterisationmethodologyforpowder-bed-basedmetaladditivemanufacturing.ProgAdditManuf2016;1(1–2):9–20.[78]CordovaL,CamposM,TingaT.Powdercharacterizationandoptimizationforadditivemanufacturing.In:ProceedingsoftheVICongresoNacionaldePulvimetalurgiayICongresoIberoamericanodePulvimetalurgia;2017Jun7–9;CiudadReal,Spain;2017.[79]OlakanmiEO.Selectivelasersintering/melting(SLS/SLM)ofpureAl,Al–Mg,andAl–Sipowders:effectofprocessingconditionsandpowderproperties.JMaterProcessTechnol2013;213(8):1387–405.[80]AttarH,PrashanthKG,ZhangLC,CalinM,OkulovIV,ScudinoS,etal.EffectofpowderparticleshapeonthepropertiesofinsituTi–TiBcompositematerialsproducedbyselectivelasermelting.JMaterSciTechnol2015;31(10):1001–5.[81]GuH,GongH,DilipJJS,PalD,HicksA,DoakH,etal.EffectsofpowdervariationonthemicrostructureandtensilestrengthofTi6Al4Vpartsfabricatedbyselectivelasermelting.In:Proceedingsofthe25thAnnualInternationalSolidFreeformFabricationSymposium;2014Aug4–6;Austin,TX,USA;2014.p.4–6.[82]NguyenQB,NaiMLS,ZhuZ,SunCN,WeiJ,ZhouW.CharacteristicsofInconelpowdersforpowder-bedadditivemanufacturing.Engineering2017;3(5):695–700.[83]SpieringsAB,HerresN,LevyG.In?uenceoftheparticlesizedistributiononsurfacequalityandmechanicalpropertiesinadditivemanufacturedstainlesssteelparts.In:Proceedingsofthe21stAnnualInternationalSolidFreeformFabricationSymposium;2010Aug9–11;Austin,TX,USA;2010.p.195–202.[84]ParteliEJR,P?schelT.Particle-basedsimulationofpowderapplicationinadditivemanufacturing.PowderTechnol2016;288:96–102.[85]SimchiA.Theroleofparticlesizeonthelasersinteringofironpowder.MetallMaterTransB2004;35(5):937–48.[86]MeierC,PennyRW,ZouY,GibbsJS,HartAJ.Thermophysicalphenomenainmetaladditivemanufacturingbyselectivelasermelting:fundamentals,modeling,simulationandexperimentation.2017.arXiv:1709.09510.[87]GermanRM.Predictionofsintereddensityforbimodalpowdermixtures.MetallTransA1992;23(5):1455–65.[88]KarapatisNP,EggerG,GygaxPE,GlardonR.Optimizationofpowderlayerdensityinselectivelasersintering.In:Proceedingsofthe10thAnnualInternationalSolidFreeformFabricationSymposium;1999Aug9–11;Austin,TX,USA;1999.p.255–64.[89]TanJH,WongWLE,DalgarnoKW.Anoverviewofpowdergranulometryonfeedstockandpartperformanceintheselectivelasermeltingprocess.AdditManuf2017;18:228–55.[90]RoyNK,FoongCS,CullinanMA.Effectofsize,morphology,andsynthesismethodonthethermalandsinteringpropertiesofcoppernanoparticlesforuseinmicroscaleadditivemanufacturingprocesses.AdditManuf2018;21:17–29.[91]BuddingA,VanekerTHJ.Newstrategiesforpowdercompactioninpowder-basedrapidprototypingtechniques.ProcediaCIRP2013;6:527–32.[92]NiinoT,SatoK.Effectofpowdercompactioninplasticlasersinteringfabrication.In:Proceedingsofthe20thAnnualInternationalSolidFreeformFabricationSymposium;2009Aug3–5;Austin,TX,USA;2009.p.193–205.[93]HaferkampH,OstendorfA,BeckerH,CzernerS,StipplerP.CombinationofYb:YAG-disclaserandroll-basedpowderdepositionforthemicro-lasersintering.JMaterProcessTechnol2004;149(1–3):623–6.[94]GibsonI,RosenD,StuckerB.Additivemanufacturingtechnologies:3Dprinting,rapidprototyping,anddirectdigitalmanufacturing.NewYork:Springer;2015.[95]YangS,EvansJRG.Meteringanddispensingofpowder;thequestfornewsolidfreeformingtechniques.PowderTechnol2007;178(1):56–72.[96]MatsusakaS,YamamotoK,MasudaH.Micro-feedingofa?nepowderusingavibratingcapillarytube.AdvPowderTechnol1996;7(2):141–51.[97]MatsusakaS,UrakawaM,MasudaH.Micro-feedingof?nepowdersusingacapillarytubewithultrasonicvibration.AdvPowderTechnol1995;6(4):283–93.[98]YangS,EvansJRG.Adrypowderjetprinterfordispensingandcombinatorialresearch.PowderTechnol2004;142(2–3):219–22.[99]LiX,ChoiH,YangY.Microrapidprototypingsystemformicrocomponents.ThinSolidFilms2002;420–421:515–23.[100]BaileyAG.Thescienceandtechnologyofelectrostaticpowderspraying,transportandcoating.JElectrost1998;45(2):85–120.[101]YangQ,MaY,ZhuJ,ChowK,ShiK.Anupdateonelectrostaticpowdercoatingforpharmaceuticals.Particuology2017;31:1–7.[102]FitchCJ,inventor;InternationalBusinessMachinesCorp,assignee.Electrophotographicprintingmachine.UnitedStatespatentUS2807233A.1957Sep24.[103]LiewCL,LeongKF,ChuaCK,DuZ.Dualmaterialrapidprototypingtechniquesforthedevelopmentofbiomedicaldevices.Part2:Secondarypowderdeposition.IntJAdvManufTechnol2002;19(9):679–87.[104]KumarAV,ZhangH.Electrophotographicpowderdepositionforfreeformfabrication.In:Proceedingsofthe10thAnnualInternationalSolidFreeformFabricationSymposium;1999Aug9–11;Austin,TX,USA;1999.p.647–54.[105]KumarAV,DuttaA,FayJE.Solidfreeformfabricationbyelectrophotographicprinting.In:Proceedingsofthe14thAnnualInternationalSolidFreeformFabricationSymposium;2003Aug4–6;Austin,TX,USA;2003.p.39–49.[106]ThomasS,TobiasL,PhilippA,StephanR.Electrostaticmulti-materialpowderdepositionforsimultaneouslaserbeammelting.In:InternationalConferenceonInformation,CommunicationandAutomationTechnologies(ICAT);2014Aug14–15;Venice,Italy;2014.[107]MelvinIIILS,BeamanJrJJ.Asievefeedsystemfortheselectivelasersinteringprocess.In:Proceedingsofthe6thAnnualInternationalSolidFreeformFabricationSymposium;1995Aug7–9;Austin,TX,USA;1995.p.425–32.[108]MelvinIIILS,BeamanJJ.Theelectrostaticapplicationofpowderforselectivelasersintering.In:Proceedingsofthe2ndAnnualInternationalSolidFreeformFabricationSymposium;1991Aug12–14;Austin,TX,USA;1991.p.171–7.[109]SwaminathanB,JoshiAM,PatibandlaNB,NgHT,KumarA,NgE,etal.,inventors;AppliedMaterialsInc.,assignee.Additivemanufacturingwithelectrostaticcompaction.UnitedStatespatentUS20160368056A1.2016Dec22.720B.Nagarajanetal./Engineering5(2019)702–720[110]PaascheN,BrabantT,StreitS,inventors;EOSGmbHElectroOpticalSystems,assignee.Layerapplicationdeviceforanelectrostaticlayerapplicationofabuildingmaterialinpowderformanddeviceandmethodformanufacturingathree-dimensionalobject.UnitedStatespatentUS20090017219A1.2009Jan15.[111]ZhaoY,KoizumiY,AoyagiK,YamanakaK,ChibaA.Characterizationofpowderbedgenerationinelectronbeamadditivemanufacturingbydiscreteelementmethod(DEM).MaterTodayProc2017;4(11):11437–40.[112]ElliottAM,NandwanaP,SiddelDH,ComptonB.Amethodformeasuringpowderbeddensityinbinderjetadditivemanufacturingprocessandthepowderfeedstockcharacteristicsin?uencingthepowderbeddensity.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.1031–7.[113]ZoccaA,GomesCM,MühlerT,GünsterJ.Powder-bedstabilizationforpowder-basedadditivemanufacturing.AdvMechEng2014;6:491581.[114]Secondary?nishingprocessesinmetaladditivemanufacturing[Internet].Shrewsbury:InovarCommunicationsLtd.;[cited2018Jun30].Availablefrom:http://www.metal-am.com/introduction-to-metal-additive-manufacturing-and-3d-printing/secondary-?nishing-processes/.[115]MarimuthuS,TriantaphyllouA,AntarM,WimpennyD,MortonH,BeardM.Laserpolishingofselectivelasermeltedcomponents.IntJMachToolsManuf2015;95:97–104.[116]SpieringsAB,StarrTL,WegenerK.Fatigueperformanceofadditivemanufacturedmetallicparts.RapidPrototypJ2013;19(2):88–94.[117]AlrbaeyK,WimpennyDI,Al-BarzinjyAA,MorozA.ElectropolishingofRe-meltedSLMstainlesssteel316Lpartsusingdeepeutecticsolvents:3?3fullfactorialdesign.JMaterEngPerform2016;25(7):2836–46.[118]PykaG,BurakowskiA,KerckhofsG,MoesenM,VanBaelS,SchrootenJ,etal.Surfacemodi?cationofTi6Al4Vopenporousstructuresproducedbyadditivemanufacturing.AdvEngMater2012;14(6):363–70.[119]MingareevI,BonhoffT,El-SherifAF,MeinersW,KelbassaI,BiermannT,etal.Femtosecondlaserpost-processingofmetalpartsproducedbylaseradditivemanufacturing.JLaserAppl2013;25(5):052009.[120]LamikizA,SánchezJA.LópezdeLacalleLN,AranaJL.Laserpolishingofpartsbuiltupbyselectivelasersintering.IntJMachToolsManuf2007;47(12–13):2040–50.[121]MaCP,GuanYC,ZhouW.LaserpolishingofadditivemanufacturedTialloys.OptLasersEng2017;93:171–7.[122]deWildM,SchumacherR,MayerK,SchkommodauE,ThomaD,BredellM,etal.Boneregenerationbytheosteoconductivityofporoustitaniumimplantsmanufacturedbyselectivelasermelting:ahistologicalandmicrocomputedtomographystudyintherabbit.TissueEngPartA2013;19(23–24):2645–54.[123]QuJ,ShihAJ,ScattergoodRO,LuoJ.Abrasivemicro-blastingtoimprovesurfaceintegrityofelectricaldischargemachinedWC–Cocomposite.JMaterProcessTechnol2005;166(3):440–8.[124]KennedyDM,VaheyJ,HanneyD.Microshotblastingofmachinetoolsforimprovingsurface?nishandreducingcuttingforcesinmanufacturing.MaterDes2005;26(3):203–8.[125]WangX,LiS,FuY,GaoH.Finishingofadditivelymanufacturedmetalpartsbyabrasive?owmachining.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.2470–2.[126]BagehornS,WehrJ,MaierHJ.Applicationofmechanicalsurface?nishingprocessesforroughnessreductionandfatigueimprovementofadditivelymanufacturedTi-6Al-4Vparts.IntJFatigue2017;102:135–42.[127]BoschettoA,BottiniL,VenialiF.SurfaceroughnessandradiusingofTi6Al4Vselectivelasermelting-manufacturedpartsconditionedbybarrel?nishing.IntJAdvManufTechnol2018;94(5–8):2773–90.[128]YangL,GuH,LassellA.SurfacetreatmentofTi6Al4Vpartsmadebypowderbedfusionadditivemanufacturingprocessesusingelectropolishing.In:Proceedingsofthe25thAnnualInternationalSolidFreeformFabricationSymposium;2014Aug4–6;Austin,TX,USA;2014.p.268–77.[129]YasaE,KruthJP,DeckersJ.Manufacturingbycombiningselectivelasermeltingandselectivelasererosion/laserre-melting.CIRPAnn2011;60(1):263–6.[130]HashimotoF,YamaguchiH,KrajnikP,WegenerK,ChaudhariR,HoffmeisterHW,etal.Abrasive?ne-?nishingtechnology.CIRPAnn2016;65(2):597–620.[131]StrickstrockM,RotheH,GrohmannS,HildebrandG,ZyllaIM,LiefeithK.In?uenceofsurfaceroughnessofdentalzirconiaimplantsontheirmechanicalstability,cellbehaviorandosseointegration.BioNanoMaterials2017;18(1–2):20160013.[132]KlotzUE,TibertoD,HeldF.Additivemanufacturingof18-Karatyellow-goldalloys.In:Proceedingsofthe30thSantaFeSymposiumonJewelryManufacturingTechnology;2016May15–18;Albuquerque,NM,USA;2016.p.255–72.[133]GalimbertiG,DoubrovskiM,GuaglianoM,PrevitaliB,VerlindenJC.Investigatingthelinksbetweentheprocessparametersandtheirin?uenceontheaestheticevaluationofselectivelasermeltedparts.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2016Aug8–10;Austin,TX,USA;2016.p.2367–86.[134]LiuC,LiuZ,WangB.Modi?cationofsurfacemorphologytoenhancetribologicalpropertiesforCVDcoatedcuttingtoolsthroughwetmicro-blastingpost-process.CeramInt2018;44(3):3430–9.[135]TanKL,YeoSH.Surfacemodi?cationofadditivemanufacturedcomponentsbyultrasoniccavitationabrasive?nishing.Wear2017;378–379:90–5.[136]GuoJ,KumCW,AuKH,TanZE,WuH,LiuK.Newvibration-assistedmagneticabrasivepolishing(VAMAP)methodformicrostructuredsurface?nishing.OptExpress2016;24(12):13542–54.[137]DelfsP,LiZ,SchmidHJ.Mass?nishingoflasersinteredparts.In:Proceedingsofthe26thAnnualInternationalSolidFreeformFabricationSymposium;2015Aug10–12;Austin,TX,USA;2015.p.514–26.[138]JavierGilF,PlanellJA,PadrósA,AparicioC.Theeffectofshotblastingandheattreatmentonthefatiguebehavioroftitaniumfordentalimplantapplications.DentMater2007;23(4):486–91.[139]GrubovaI,PriamushkoT,SurmenevaM,KornevaO,EppleM,PrymakO,etal.Sand-blastingtreatmentasawaytoimprovetheadhesionstrengthofhydroxyapatitecoatingontitaniumimplant.JPhysConfSer2017;830:012109.[140]FelixC.Surfacetreatmentformedicalparts[Internet].Cincinnati:GardnerBusinessMediaInc.;c2019[updated2007Jul16;cited2018Jun30].Availablefrom:https://www.productionmachining.com/articles/surface-treatment-for-medical-parts(1).[141]LorenzKA,JonesJB,WimpennyDI,JacksonMR.Areviewofhybridmanufacturing.In:Proceedingsofthe27thAnnualInternationalSolidFreeformFabricationSymposium;2015Aug10–12;Austin,TX,USA;2015.p.96–108.[142]LauwersB,KlockeF,KlinkA,TekkayaAE,NeugebauerR,McintoshD.Hybridprocessesinmanufacturing.CIRPAnn2014;63(2):561–83.[143]NagelJKS,LiouFW.Hybridmanufacturingsystemmodelinganddevelopment.In:ProceedingsoftheASME2012InternationalDesignEngineeringTechnicalConferencesandComputersandInformationinEngineeringConference;2012Aug12–15;Chicago,IL,USA.NewYork:TheAmericanSocietyofMechanicalEngineers;2012.p.189–98.[144]FlynnJM,ShokraniA,NewmanST,DhokiaV.Hybridadditiveandsubtractivemachinetools—researchandindustrialdevelopments.IntJMachToolsManuf2016;101:79–101.[145]WhitesidesGM.Theoriginsandthefutureofmicro?uidics.Nature2006;442(7101):368–73.[146]AminR,KnowltonS,HartA,YenilmezB,GhaderinezhadF,KatebifarS,etal.3D-printedmicro?uidicdevices.Biofabrication2016;8(2):022001.[147]SteigertJ,HaeberleS,BrennerT,MüllerC,SteinertCP,KoltayP,etal.Rapidprototypingofmicro?uidicchipsinCOC.JMicromechMicroeng2007;17(2):333–41.[148]HoCM,NgSH,LiKH,YoonYJ.3Dprintedmicro?uidicsforbiologicalapplications.LabChip2015;15(18):3627–37.[149]ShiuPP,KnopfGK,OstojicM,NikumbS.Rapidfabricationofmicromoldsforpolymericmicro?uidicdevices.In:Proceedingsofthe2007CanadianConferenceonElectricalandComputerEngineering;2007Apr22–26;Vancouver,BC,Canada.NewYork:IEEE;2007.p.8–11.[150]ShenYK,LinJD,HongRH.Analysisofmoldinsertfabricationfortheprocessingofmicro?uidicchip.PolymEngSci2009;49(1):104–14.[151]BeckerH,LocascioLE.Polymermicro?uidicdevices.Talanta2002;56(2):267–87.[152]SawaY,YamashitaK,KitadaniT,NodaD,HattoriT.Fabricationofhighhardnessmicromoldusingdoublelayernickelelectroforming.In:Proceedingsofthe2008InternationalSymposiumonMicro-NanoMechatronicsandHumanScience;2008Nov6–9;Nagoya,Japan.NewYork:IEEE;2008.p.402–7.[153]ZhangN,SrivastavaAP,BrowneDJ,GilchristMD.Performanceofnickelandbulkmetallicglassastoolinsertsforthemicroinjectionmoldingofpolymericmicro?uidicdevices.JMaterProcessTechnol2016;231:288–300.[154]KimK,ParkS,LeeJB,ManoharaH,DestaY,MurphyM,etal.RapidreplicationofpolymericandmetallichighaspectratiomicrostructuresusingPDMSandLIGAtechnology.MicrosystTechnol2002;9(1–2):5–10.[155]GEAdditive.Howadditiveishelpinginnovatorstransformdentalimplantology[Internet]GeneralElectric.;c2019[cited2019Apr13]Availablefrom:https://www.ge.com/additive/case-studies/how-additive-helping-innovators-transform-dent-al-implantology.[156]3DSystems.Directmetal3Dprintingbringsgrowthbene?tstoMicroDentdentallab[Internet].Valencia:3DSystems,Inc.;c2019[cited2018Jun30].Availablefrom:https://www.3dsystems.com/learning-center/case-studies/direct-metal-3d-printing-brings-growth-bene?ts-microdent-dental-lab.[157]NyceAC.Anassessmentofthe2026U.S.marketsandtechnologyforjewelrymanufacturedby3D-preciousmetalprinting(3D-PMP)ofgold,platinum,andpalladiumpowders[Internet].Birmingham:CooksonPreciousMetalsLtd.;c2015[cited2018Jun30].Availablefrom:https://www.cooksongold-emanufacturing.com/img/downloads/3DPMP_Jewelry_markets_2026.pdf.[158]ZitoD,AllodiV,SbornicchiaP,RappoS.Whyshouldwedirect3Dprintjewelry?Acomparisonbetweentwothoughts:todayandtomorrow.In:Proceedingsofthe31thSantaFeSymposiumonJewelryManufacturingTechnology;2017May21–24;Albuquerque,NM,USA;2017.p.515–56.[159]PoglianiC,AlbertoA.Casestudyofproblemsandtheirsolutionsformakingqualityjewelryusingselectivelasermelting(SLM)technology.In:Proceedingsofthe30thSantaFeSymposiumonJewelryManufacturingTechnology;2016May15–18;Albuquerque,NM,USA;2016.p.431–58.Engineering 2 (2016) xxx–xxxContents lists available at ScienceDirect
Engineering
ResearchAdditive Manufacturing—Review微观选择性激光熔化技术发展的现状及未来展望Balasubramanian Nagarajan,Zhiheng Hu,Xu Song,Wei Zhai, Jun Wei *Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore 637662, Singaporea r t i c l e i n f oArticle history:Received 27 July 2018Revised 31 January 2019Accepted 14 March 2019Available online 3 July 2019摘要增材制造(AM)能将各种材料制成形状复杂的部件,因此在制造业中越来越受到青睐。选择性激光熔化(SLM)是一种常见的AM技术,它基于粉床熔融法(PBF)来处理金属,但目前只专注于大中型元件的制作。本文综述了微型金属材料SLM的研究现状。与通常用于微观AM的直接写入技术相比,微观SLM由于许多因素而更加具有吸引力,包括更快的周期时间、流程简单性和材料通用性。此外,本文综合评价了利用SLM和选择性激光烧结(SLS)制造微尺度零件的各种研究工作和商业系统,不仅从微观尺度上找出了SLM存在的问题,包括粉末重涂、激光光学和粉末粒度等,还详细阐述了SLM未来的发展方向。文章详细回顾了粉床技术中现有的粉末重涂方法,并描述了在AM领域实施干粉分配方法的新进展。对AM部件的一些二次整理技术进行了回顾,重点介绍了细微加工特征的应用以及与微观SLM系统的结合。? 2019 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).关键词增材制造选择性激光熔化微细加工混合处理粉床重涂1.引言近年来,人们对微制造技术的需求不断增加,以此来满足不同行业的发展需求,这些行业包括电子学、医学、汽车、生物技术、能源、通信和光学[1]。许多产品和部件,包括微制动器、微机械装置、传感器和探针、微流控元件、医用植入设备、微转换器、光学器件、存储芯片、微电机、磁性硬盘磁头、计算机处理器、喷墨打印头、引脚、电子连接器、微型燃料电池,以及最重要的微机电系统(MEMS)设备,都是通过微加工技术制造的。微观尺度制造过程通常可分为基于MEMS的(或基于光刻的)和基于非MEMS的(或非光刻的)过程。金属材料在微部件中的应用取得了显著的进展,很大程度上是由于它们在力学性能和电气性能方面的适用性(即强度、延展性、电导率等)[2]。微制造中的金属的加工处理通常通过基于非光刻的技术来实现,如机械加工、成形和接合[3]。传统的微制造方法具有以下一个或多个限制:难以制造形状复杂的原件、材料限制、工具相关问题、无法执行真实的三维(3D)制造等。增材制造(AM)技术在过去20年中的发展为金属制造开辟了新的领域,因为AM能够制造出任何形状复杂的元件[4,5]。AM将粉末或线材原料以一种逐层的方式整合成最终产品。AM流程首先对所需部件进行3D建模,然后将其切片成不同的二维(2D)层。随后沉积原料,并利用一种能源选择性地增加每一层[6]。AM技术通常可分为七大类:材料挤压、光聚合、材料喷射、* Corresponding author. E-mail address: jwei@SIMTech.a-star.edu.sg (J. Wei).
相关推荐: