Author name et al. / Engineering 2(2016) xxx–xxx17表5?各种喷砂条件对表面光洁度的影响对比Substrate materialTi implantsYellow-gold alloysInitial conditionSLMSLM
Abrasive blasting mediaCorundum
Corundum sand, glass beadsRoughness, Ra or Sa (μm)Initial3.312.9Final0.94.2Reduction (%)7267Ref.[122][132]HSS, coated carbidesMilling/ turning/ drillingCeramic beadsWC-Co
EDMSiCTiN/Al2O3/TiCN coatingsCVDCorundumY-TZP
Milling
Y-TZP particles
HSS: high-speed steel; CVD: chemical vapor deposition; NA: not available.该技术大幅度降低了SLM试样的表面粗糙度(48 h的处理时间内从13.3 μm到0.2 μm)。尽管该技术具有良好的表面处理性能和工艺简单性,但缺点是耗费时间长。为了从前文讨论的可用技术库中识别出适用于微观SLM组件的表面处理工艺,必须考虑许多因素,包括制造特征的初始粗糙度、零件尺寸、几何形状、最小特征尺寸分辨率、工艺复杂性、周期时间等。微观SLM组件的尺寸通常为毫米级,而最小特征分辨率却在几微米的范围内(表1)。表4中列出了用于微观SLM组件的技术的合格性。尽管整体研磨技术可以获得良好的表面光洁度,但可能会在此过程中损害微尺度特征。用计算机数控技术(CNC)加工微观SLM零件是可行的,但复杂几何条件下的微加工和刀具路径控制是难点。特别是,薄壁的精密加工以及内部和高深宽比特征的精密加工非常困难且耗时。CHE和ECP通常要求表面平整,并要沿着边缘侵蚀材料,这可能会导致微小零件的尺寸误差较大。磨料喷砂通常用于整饰许多行业(如牙科和珠宝)的微小零件,所以可能是一种理想的选择。微磨料喷砂是一系列医疗应用中最常用的表面处理之一,例如用微磨料喷砂可获得支持骨整合的牙种植体所需的表面光洁度[122,131,138–140]。Kennedy等[124]在高速钢(HSS)和涂层碳化物上使用陶瓷珠进行微喷丸处理,表面粗糙度降低60%,最细的表面Ra为0.4 μm。激光抛光是另一种合适的选择,尽管重熔引起的热应力可能导致部件变形,尤其残余的热应力对薄弱部分的冲击很大。混合制造系统将AM与减法或其他辅助系统集成在一起,以提高机器系统的生产率和定制性能[141–143]。AM中的混合系统把激光熔覆头(在LMD的情况下)安装在铣床的z 轴上,然后集成激光系统和CNC铣床[143]。总的来说,系统设计应该以最少的后处理来提高结构的构建性能、精度和表面光洁度。在粉末床熔融添加剂制造(PBF-AM)的情况下,除了Sodick OPM250E和Matsuura LUMEX Avance-25 [144]之外,很少有混合10.460[124]1.30.746[123]0.180.0950[134]NS
1.7
NA
[131]
系统可用,尽管PBF-AM之后的组件的表面质量一直存在问题[128]。虽然在粉末床AM加工过程中,精密加工已经改善了许多,但是还没有开发出包括加成和减成加工的混合系统来制造微尺度的金属材料。与表4中列出的精密加工工艺相比,激光重熔或激光抛光与微SLM集成来开发混合系统似乎是最可行选择。可以在现有SLM系统中使用相同的激光源或不同的激光源。尽管如此,应该承认每种精密加工技术都有其自身的优点和局限性,而选择一种理想的表面处理工艺取决于SLM制造零件的初始条件和精加工要求。因此,应改进SLM技术的能力以制造具有精细表面光洁度的特征,以便消除对任何二次加工的需要。6. 潜在应用微观AM(特别是微观SLM)已经应用于多个领域的精密器件和元件的制造中。微流体装置可应用于细胞生物学、生物医学科学和临床诊断领域[145]。本文尝试了直接型AM的微流体装置,但发现该方法的生产率远低于典型的注射成型工艺[146,147]。制造微流体装置的最常用技术是喷射模塑法和热压成型[148,149]。这些技术需要主模具或工具插件把特征复制到基板上。用于微流体的主模具通常由光刻、电镀和模塑(LIGA)及类似LIGA的工艺[150,151]制造出来。然而,这些技术受到材料和设计的限制。用电铸镍来制造金属母模也是一种方法,但制造出来的模具硬度不够[152,153],微型模具的强度还需要改进。精密的制造金属微型模具的AM技术可以提高工具寿命,从而提高生产率。相同的技术可用于生产高深宽比的微结构,这种微结构越来越多地应用于MEMS [154]。Roy等[44]使用微型SLS工艺来制造电气互连实体和电介质,用于组装集成电路(IC)组件。两个柔性基板是通过在预制的迹线上印刷银电极和银连接体桥接的[16]。18Author name et al. / Engineering 2(2016) xxx–xxx微观AM也可以应用于牙科领域。目前,除了最常见的立体光刻和数字光投影(DLP)之外,SLM和SLS也用于牙科[155,156]。牙桥和牙冠、牙种植体、局部义齿和模型铸件都是微观AM在牙科行业中的一些潜在应用。在过去十年中,珠宝行业一直在尝试使用AM加工珠宝。这个领域正在不断发展,因为几乎所有主要的AM设备制造商都不断加大使用AM来加工贵金属:如金、铂和钯合金的力度[157]。AM除了一些常见的优势,如近净成形制造,减少材料浪费,以及加快小批量的整体工艺周期速度外,微观AM制造薄壁、花丝、网状物的能力,还有轻巧的部件可以增强设计的自由度和美感,是吸引珠宝行业的特定因素。珠宝制造商的多项研究[158,159]强调,尽管目前局限性仍然存在,但是SLM将与传统铸造共存,以节约成本和实现设计的多功能性。Hirt等[16]设想可以将设备和传感器直接印刷应用到航空、汽车、医疗和光学行业的现有技术上。微米级或纳米级分辨率的部件有助于实现可控的微结构。利用微结构的精确控制来改善AM制造部件的机械强度和摩擦学性能。7. 结论本文系统地回顾了SLM技术在金属材料上实现微尺度特征的应用。微观SLM与传统SLM的区别在于三个因素:激光光斑尺寸、粉末颗粒尺寸和层厚度。微观SLM的现有研究成功证明了在不同材料上(包括聚合物、陶瓷和金属)制作具有微观分辨率特征的可行性。目前的微观SLM系统的最小特征分辨率为15 μm,最小表面粗糙度为1 μm,最大部件密度为99.3%。考虑到该领域的学术研究有限,让人惊叹的是,市场上已经出现了一些商业化的微观SLM系统。商业系统可达到的最小光斑尺寸和层厚度分别为20 μm和1 μm。现有文献的一个主要限制是,没有一项工作试图研究制造零件的物理性质和微观结构,这使得跨尺度比较SLM工艺变得困难。为了发展微观SLM技术,SLM系统还需要进一步的修改,如调整光学系统,粉末重涂和粉末的分配和成形阶段的驱动。目前限制获得薄且均匀的粉末层的因素主要是粉末特性和粉末重涂系统。文献表明,目前的粉末重涂方法主要是通过刀片或滚轮进行的,并不适合处理细粉末。本文综述了几种可能的干粉滴涂方法在粉末床AM系统中的可行性。在已经实施和测试的AM系统中,人们采用了振动和静电的粉末分配方法。静电技术在涂层循环时间方面似乎是最有希望的。微观SLM的有效策略是整合所有子系统:如粉末分配、收集和粉末筛分,并建立一个闭环反馈系统。本文还研究了SLM部件表面处理技术。虽然大多数工艺可以实现小于1 μm的表面粗糙度,但是选择一个理想的微观SLM工艺要基于许多因素,包括零件几何形状、特征分辨率和精加工要求。文献表明,喷砂是目前微零件常用的精加工技术。在混合处理的方法中,激光抛光作为微观SLM的二次精加工技术似乎比其他技术更实用。不限于SLM/SLS,制约微AM应用的常见因素有:粉末粒径有限,由于金属中的高散热导致加热区的限制较低,分辨率控制困难,表面粗糙,粉末处理能力不理想以及取模困难[14,16]。这些因素表明有必要开发新的系统,使用新型的方法来进行粉末配置和部件的后期处理。微观SLM未来方向应侧重于两个方面:与设备有关的因素和与工艺有关的因素。应设计一种系统来处理纳米级且易于聚集的金属粉末。重点应放在开发一种创新性的粉末重涂系统,该系统可以实现亚微米级厚度的均匀粉末层,同时不会影响重涂速度。关于工艺知识,需要更多的研究来了解纳米级粉末颗粒与激光束之间的相互作用。由于目前研究数量有限,需要进一步了解微SLM制造的部件的微观结构和力学性能。考虑到具有优良性能的金属微粒在精密工程、生物医学、牙科和珠宝等各个领域的应用日益广泛, SLM的进一步改进将扩大它本身甚至AM的应用领域。AcknowledgementsThe authors would like to acknowledge financial sup-port from the Science and Engineering Research Council, Agency for Science, Technology and Research (A*STAR), Singapore (142 68 00088).Compliance with ethics guidelinesBalasubramanian Nagarajan, Zhiheng Hu, Xu Song, Wei Zhai, and Jun Wei declare that they have no conflict of Author name et al. / Engineering 2(2016) xxx–xxx19interest or financial conflicts to disclose.References [1] Qin Y, Brockett A, Ma Y, Razali A, Zhao J, Harrison C, et al. Micromanufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol 2010;47(9–12):821–37. [2] Alting L, Kimura F, Hansen HN, Bissacco G. Micro engineering. CIRP Ann 2003;52(2):635–57. [3] Jain VK, Sidpara A, Balasubramaniam R, Lodha GS, Dhamgaye VP, Shukla R. Micromanufacturing: a review—part I. Proc Inst Mech Eng Part B 2014;228 (9):973–94. [4] Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Comput-Aided Des 2015;69:65–89. [5] Huang Y, Leu MC, Mazumder J, Donmez A. Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 2015;137(1):014001. [6] Gu DD, Meiners W, Wissenbach K, Poprawe R. Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 2012;57(3):133–64. [7] Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016;61 (5):315–60. [8] Obikawa T, Yoshino M, Shinozuka J. Sheet steel lamination for rapid manufacturing. J Mater Process Technol 1999;89–90:171–6. [9] Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater 2016;117:371–92. [10] Gibson I, Rosen D, Stucker B. Binder jetting. In: Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York: Springer; 2015. p. 205–18. [11] Fayazfar H, Salarian M, Rogalsky A, Sarker D, Russo P, Paserin V, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater Des 2018;144:98–128. [12] Vilar R. Laser cladding. J Laser Appl 1999;11(2):64–79. [13] Kruth JP, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J. Part and material properties in selective laser melting of metals. In: Proceedings of the 16th International Symposium on Electromachining; 2010 Apr 19–23; Shanghai, China; 2010. p. 3–14. [14] Vaezi M, Seitz H, Yang S. A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 2013;67(5–8):1721–54. [15] Engstrom DS, Porter B, Pacios M, Bhaskaran H. Additive nanomanufacturing— a review. J Mater Res 2014;29(17):1792–816. [16] Hirt L, Reiser A, Spolenak R, Zambelli T. Additive manufacturing of metal structures at the micrometer scale. Adv Mater 2017;29(17):1604211. [17] Bertsch A, Renaud P. Microstereolithography. In: Bártolo P, editor. Stereolithography. Boston: Springer; 2011. p. 81–112. [18] Ko SH, Chung J, Hotz N, Nam KH, Grigoropoulos CP. Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. J Micromech Microeng 2010;20(12):125010. [19] Gokuldoss PK, Kolla S, Eckert J. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel) 2017;10(6):672. [20] Regenfuss P, Ebert R, Exner H. Laser micro sintering—a versatile instrument for the generation of microparts. Laser Tech J 2007;4(1):26–31. [21] DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 2018;92:112–224. [22] AlMangour B, Grzesiak D, Yang JM. Selective laser melting of TiB2/316L stainless steel composites: the roles of powder preparation and hot isostatic pressing post-treatment. Powder Technol 2017;309:37–48. [23] Yakout M, Elbestawi MA, Veldhuis SC. On the characterization of stainless steel 316L parts produced by selective laser melting. Int J Adv Manuf Technol 2018;95(5–8):1953–74. [24] Yasa E, Kruth JP. Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng 2011;19:389–95. [25] Tucho WM, Lysne VH, Austb? H, Sjolyst-Kverneland A, Hansen V. Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 2018;740:910–25. [26] Nguyen QB, Luu DN, Nai SML, Zhu Z, Chen Z, Wei J. The role of powder layer thickness on the quality of SLM printed parts. Arch Civ Mech Eng 2018;18 (3):948–55. [27] Cherry JA, Davies HM, Mehmood S, Lavery NP, Brown SGR, Sienz J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int J Adv Manuf Technol 2015;76(5–8):869–79. [28] Li R, Liu J, Shi Y, Du M, Xie Z. 316L stainless steel with gradient porosity fabricated by selective laser melting. J Mater Eng Perform 2010;19 (5):666–71. [29] Zhong Y, Liu L, Wikman S, Cui D, Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater 2016;470:170–8. [30] Emmelmann C, Kranz J, Herzog D, Wycisk E. Laser additive manufacturing of metals. In: Schmidt V, Belegratis MR, editors. Laser technology in biomimetics: basics and applications. Berlin: Springer; 2013. p. 143–62. [31] Fischer J, Kniepkamp M, Abele E. Micro laser melting: analyses of current potentials and restrictions for the additive manufacturing of micro structures. In: Proceedings of the 25th Annual International Solid Freeform Fabrication (SFF) Symposium; 2014 Aug 4–6; Austin, TX, USA; 2014, p. 22–35. [32] Regenfuss P, Hartwig L, Kl?tzer S, Ebert R, Exner H. Microparts by a novel modification of selective laser sintering. In: Proceedings of Rapid Prototyping and Manufacturing Conference; 2003 May 12–15; Chicago, IL, USA; 2003. p. 1–7. [33] Regenfuss P, Streek A, Hartwig L, Kl?tzer S, Brabant T, Horn M, et al. Principles of laser micro sintering. Rapid Prototyping J 2007;13(4):204–12. [34] Regenfuss P, Hartwig L, Kl?tzer S, Ebert R, Brabant T, Petsch T, et al. Industrial freeform generation of microtools by laser micro sintering. Rapid Prototyping J 2005;11(1):18–25. [35] Streek A, Regenfuss P, Ebert R, Exner H; Fachbereich MPI Laserapplikationszentrum. Laser micro sintering—a quality leap through improvement of powder packing. In: Proceedings of the 19th Annual International Solid Freeform Fabrication Symposium; 2008 Aug 13–15; Austin, TX, USA; 2008. p. 297–308. [36] Exner H, Horn M, Streek A, Ullmann F, Hartwig L, Regenfu? P, et al. Laser micro sintering: a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder. Virtual Phys Prototyp 2008;3 (1):3–11. [37] Gieseke M, Senz V, Vehse M, Fiedler S, Irsig R, Hustedt M, et al. Additive manufacturing of drug delivery systems. Biomed Tech 2012;57(Suppl 1):398–401. [38] Noelke C, Gieseke M, Kaierle S. Additive manufacturing in micro scale. J Laser Appl 2013;2013(1):1–6. [39] Dudziak S, Gieseke M, Haferkamp H, Barcikowski S, Kracht D. Functionality of laser-sintered shape memory micro-actuators. Phys Procedia 2010;5:607–15. [40] Yadroitsev I, Bertrand P. Selective laser melting in micro manufacturing. In: Katalinic B, editor. Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium. Vienna: DAAAM International; 2010. [41] Abele E, Kniepkamp M. Analysis and optimisation of vertical surface roughness in micro selective laser melting. Surf Topogr Metrol Prop 2015;3:034007. [42] Kniepkamp M, Fischer J, Abele E. Dimensional accuracy of small parts manufactured by micro selective laser melting. In: Bourell DL, editor. Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 1530–7. [43] Roberts RC, Tien NC. 3D printed stainless steel microelectrode arrays. In: Proceedings of 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems; 2017 June 18–22; Kaohsiung, China. New York: IEEE; 2017. p. 1233–6. [44] Roy N, Foong C, Cullinan M. Design of a micro-scale selective laser sintering system. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 1495–508. [45] Roy N, Cullinan M. l-SLS of metals: design of the powder spreader, powder bed actuators and optics for the system. In: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium; 2015 Aug 10–12; Austin, TX, USA; 2015. p. 134–55. [46] Roy N, Dibua OG, Cullinan M. Effect of bed temperature on the laser energy required to sinter copper nanoparticles. JOM 2018;70(3):401–6. [47] Ke L, Zhu H, Yin J, Wang X. Effects of peak laser power on laser micro sintering of nickel powder by pulsed Nd:YAG laser. Rapid Prototyping J 2014;20 (4):328–35. [48] Regenfuss P, Streek A, Ullmann F, Kühn C, Hartwig L, Horn M, et al. Laser micro sintering of ceramic materials: part 2. Interceram 2008;57(1):6–9. [49] Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Appl Surf Sci 2007;253(19):8064–9. [50] Liverani E, Toschi S, Ceschini L, Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol 2017;249:255–63. [51] Collins PC, Brice DA, Samimi P, Ghamarian I, Fraser HL. Microstructural control of additively manufactured metallic materials. Annu Rev Mater Res 2016;46(1):63–91. [52] Al-Bermani SS. An investigation into microstructure and microstructural control of additive layer manufactured Ti-6Al-4V by electron beam melting [dissertation]. Sheffield: University of Sheffield; 2011. [53] Phan MAL, Fraser D, Gulizia S, Chen ZW. Horizontal growth direction of dendritic solidification during selective electron beam melting of a Co-based alloy. Mater Lett 2018;228:242–5. [54] McLouth TD, Bean GE, Witkin DB, Sitzman SD, Adams PM, Patel DN, et al. The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting. Mater Des 2018;149:205–13. [55] Hu Z, Nagarajan B, Song X, Huang R, Zhai W, Wei J. Formation of SS316L single tracks in micro selective laser melting: surface, geometry, and defects. Adv Mater Sci Eng 2019;2019:1–9.20Author name et al. / Engineering 2(2016) xxx–xxx [56] Lewandowski JJ, Seifi M. Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 2016;46:151–86. [57] Suryawanshi J, Prashanth KG, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 2017;696:113–21. [58] Mohd Yusuf SYB, Gao N. Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater Sci Technol 2017;33 (11):1269–89. [59] Song B, Zhao X, Li S, Han C, Wei Q, Wen S, et al. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: a review. Front Mech Eng 2015;10(2):111–25. [60] Gharbi O, Jiang D, Feenstra DR, Kairy SK, Wu Y, Hutchinson CR, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros Sci 2018;143:93–106. [61] Amato KN, Gaytan SM, Murr LE, Martinez E, Shindo PW, Hernandez J, et al. Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Mater 2012;60(5):2229–39. [62] Zhang H, Zhu H, Nie X, Qi T, Hu Z, Zeng X. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting. In: Gu B, Helvajian H, Piqué A, editors. Proceedings of the SPIE 9738, Laser 3D Manufacturing III; 2016 Feb 13–18; San Francisco, CA, USA; 2016. [63] DMP60 series [Internet]. Chemnitz: 3D MicroPrint GmbH; c2019 [cited 2018 Jun 30]. Available from: http://www.3dmicroprint.com/products/machines/ dmp60-series/. [64] Gebhardt A, Schmidt FM, H?tter JS, Sokalla W, Sokalla P. Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. Physics Procedia 2010;5:543–9. [65] Precious M 080 [Internet]. Krailling: EOS GmbH Electro Optical Systems; [cited 2018 Jun 30]. Available from: https://www.eos.info/precious-m-080. [66] Mysint100, 3D selective laser fusion printer for metal powder [Internet]. Vicenza: Sisma SpA; [cited 2018 Jun 30]. Available from: http:// www.sisma.com/eng/industry/prodotti/additive-manufacturing/laser-metalfusion/ mysint100.php. [67] TruPrint 1000 [Internet]. Taicang: TRUMPF; c2019 [cited 2018 Jun 30]. Available from: http://www.trumpf-laser.com/en/products/3d-printingsystems/ truprint-series-1000.html. [68] Direct Metal Printers [Internet]. 3D Systems, Inc; c2017 [cited 2018 Jun 30]. Available from: https://www.3dsystems.com/sites/default/files/2017-01/3DSystems_ DMP_Tech_Specs_USEN_2017.01.23_WEB.pdf. [69] Ebert R, Exner H, Hartwig L, Keiper B, Kl?tzer S, Regenfuss P, inventors; 3DMICROMAC AG, assignee.Method and device for producingminiature objects or microstructured objects. United States patent US20070145629A1. 2007 Jun 28. [70] Ma M, Wang Z, Zeng X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Mater Sci Eng A 2017;685:265–73. [71] Liu B, Wildman R, Tuck C, Ashcroft I, Hague R. Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process. In: Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium; 2011 Aug 8–10; Austin, TX, USA; 2011. p. 227–38. [72] Makoana N, Yadroitsava I, M?ller H, Yadroitsev I. Characterization of 17–4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—the effect of laser power and spot size upscaling. Metals 2018;8(7):475. [73] Helmer HE, K?rner C, Singer RF. Additive manufacturing of nickel-based superalloy Inconel 718 by selective electron beam melting: processing window and microstructure. J Mater Res 2014;29(17):1987–96. [74] Bean GE, Witkin DB, McLouth TD, Patel DN, Zaldivar RJ. Effect of laser focus shift on surface quality and density of Inconel 718 parts produced via selective laser melting. Addit Manuf 2018;22:207–15. [75] Verhaeghe G, Hilton P. The effect of spot size and laser beam quality on welding performance when using high-power continuous wave solid-state lasers. In: Proceedings of the 24th International Congress on Applications of Lasers & Electro-Optics; 2005 Oct 31–Nov 3; Miami, FL, USA; 2005. p. 264–71. [76] Sutton AT, Kriewall CS, Leu MC, Newkirk JW. Powders for additive manufacturing processes: characterization techniques and effects on part properties. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 1004–30. [77] Spierings AB, Voegtlin M, Bauer T, Wegener K. Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Prog Addit Manuf 2016;1(1–2):9–20. [78] Cordova L, Campos M, Tinga T. Powder characterization and optimization for additive manufacturing. In: Proceedings of the VI Congreso Nacional de Pulvimetalurgia y I Congreso Iberoamericano de Pulvimetalurgia; 2017 Jun 7–9; Ciudad Real, Spain; 2017. [79] Olakanmi EO. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties. J Mater Process Technol 2013;213(8):1387–405. [80] Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S, et al. Effect of powder particle shape on the properties of in situ Ti–TiB composite materials produced by selective laser melting. J Mater Sci Technol 2015;31(10):1001–5. [81] Gu H, Gong H, Dilip JJS, Pal D, Hicks A, Doak H, et al. Effects of powder variation on the microstructure and tensile strength of Ti6Al4V parts fabricated by selective laser melting. In: Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium; 2014 Aug 4–6; Austin, TX, USA; 2014. p. 4–6. [82] Nguyen QB, Nai MLS, Zhu Z, Sun CN, Wei J, Zhou W. Characteristics of Inconel powders for powder-bed additive manufacturing. Engineering 2017;3 (5):695–700. [83] Spierings AB, Herres N, Levy G. Influence of the particle size distribution on surface quality and mechanical properties in additive manufactured stainless steel parts. In: Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium; 2010 Aug 9–11; Austin, TX, USA; 2010. p. 195–202. [84] Parteli EJR, P?schel T. Particle-based simulation of powder application in additive manufacturing. Powder Technol 2016;288:96–102. [85] Simchi A. The role of particle size on the laser sintering of iron powder. Metall Mater Trans B 2004;35(5):937–48. [86] Meier C, Penny RW, Zou Y, Gibbs JS, Hart AJ. Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation and experimentation. 2017. arXiv:1709.09510. [87] German RM. Prediction of sintered density for bimodal powder mixtures. Metall Trans A 1992;23(5):1455–65. [88] Karapatis NP, Egger G, Gygax PE, Glardon R. Optimization of powder layer density in selective laser sintering. In: Proceedings of the 10th Annual International Solid Freeform Fabrication Symposium; 1999 Aug 9–11; Austin, TX, USA; 1999. p. 255–64. [89] Tan JH, Wong WLE, Dalgarno KW. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit Manuf 2017;18:228–55. [90] Roy NK, Foong CS, Cullinan MA. Effect of size, morphology, and synthesis method on the thermal and sintering properties of copper nanoparticles for use in microscale additive manufacturing processes. Addit Manuf 2018;21:17–29. [91] Budding A, Vaneker THJ. New strategies for powder compaction in powderbased rapid prototyping techniques. Procedia CIRP 2013;6:527–32. [92] Niino T, Sato K. Effect of powder compaction in plastic laser sintering fabrication. In: Proceedings of the 20th Annual International Solid Freeform Fabrication Symposium; 2009 Aug 3–5; Austin, TX, USA; 2009. p. 193–205. [93] Haferkamp H, Ostendorf A, Becker H, Czerner S, Stippler P. Combination of Yb:YAG-disc laser and roll-based powder deposition for the micro-laser sintering. J Mater Process Technol 2004;149(1–3):623–6. [94] Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. New York: Springer; 2015. [95] Yang S, Evans JRG. Metering and dispensing of powder; the quest for new solid freeforming techniques. Powder Technol 2007;178(1):56–72. [96] Matsusaka S, Yamamoto K, Masuda H. Micro-feeding of a fine powder using a vibrating capillary tube. Adv Powder Technol 1996;7(2):141–51. [97] Matsusaka S, Urakawa M, Masuda H. Micro-feeding of fine powders using a capillary tube with ultrasonic vibration. Adv Powder Technol 1995;6 (4):283–93. [98] Yang S, Evans JRG. A dry powder jet printer for dispensing and combinatorial research. Powder Technol 2004;142(2–3):219–22. [99] Li X, Choi H, Yang Y. Micro rapid prototyping system for micro components. Thin Solid Films 2002;420–421:515–23. [100] Bailey AG. The science and technology of electrostatic powder spraying, transport and coating. J Electrost 1998;45(2):85–120. [101] Yang Q, Ma Y, Zhu J, Chow K, Shi K. An update on electrostatic powder coating for pharmaceuticals. Particuology 2017;31:1–7. [102] Fitch CJ, inventor; International Business Machines Corp, assignee. Electrophotographic printing machine. United States patent US2807233A. 1957 Sep 24. [103] Liew CL, Leong KF, Chua CK, Du Z. Dual material rapid prototyping techniques for the development of biomedical devices. Part 2: Secondary powder deposition. Int J Adv Manuf Technol 2002;19(9):679–87. [104] Kumar AV, Zhang H. Electrophotographic powder deposition for freeform fabrication. In: Proceedings of the 10th Annual International Solid Freeform Fabrication Symposium; 1999 Aug 9–11; Austin, TX, USA; 1999. p. 647–54. [105] Kumar AV, Dutta A, Fay JE. Solid freeform fabrication by electrophotographic printing. In: Proceedings of the 14th Annual International Solid Freeform Fabrication Symposium; 2003 Aug 4–6; Austin, TX, USA; 2003. p. 39–49. [106] Thomas S, Tobias L, Philipp A, Stephan R. Electrostatic multi-material powder deposition for simultaneous laser beam melting. In: International Conference on Information, Communication and Automation Technologies (ICAT); 2014 Aug 14–15; Venice, Italy; 2014. [107] Melvin III LS, Beaman Jr JJ. A sieve feed system for the selective laser sintering process. In: Proceedings of the 6th Annual International Solid Freeform Fabrication Symposium; 1995 Aug 7–9; Austin, TX, USA; 1995. p. 425–32. [108] Melvin III LS, Beaman JJ. The electrostatic application of powder for selective laser sintering. In: Proceedings of the 2nd Annual International Solid Freeform Fabrication Symposium; 1991 Aug 12–14; Austin, TX, USA; 1991. p. 171–7. [109] Swaminathan B, Joshi AM, Patibandla NB, Ng HT, Kumar A, Ng E, et al., inventors; Applied Materials Inc., assignee. Additive manufacturing with electrostatic compaction. United States patent US20160368056A1. 2016 Dec Author name et al. / Engineering 2(2016) xxx–xxx2122. [110] Paasche N, Brabant T, Streit S, inventors; EOS GmbH Electro Optical Systems, assignee. Layer application device for an electrostatic layer application of a building material in powder form and device and method for manufacturing a three-dimensional object. United States patent US20090017219A1. 2009 Jan 15. [111] Zhao Y, Koizumi Y, Aoyagi K, Yamanaka K, Chiba A. Characterization of powder bed generation in electron beam additive manufacturing by discrete element method (DEM). Mater Today Proc 2017;4(11):11437–40. [112] Elliott AM, Nandwana P, Siddel DH, Compton B. A method for measuring powder bed density in binder jet additive manufacturing process and the powder feedstock characteristics influencing the powder bed density. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 1031–7. [113] Zocca A, Gomes CM, Mühler T, Günster J. Powder-bed stabilization for powder-based additive manufacturing. Adv Mech Eng 2014;6:491581. [114] Secondary finishing processes in metal additive manufacturing [Internet]. Shrewsbury: Inovar Communications Ltd.; [cited 2018 Jun 30]. Available from: http://www.metal-am.com/introduction-to-metal-additivemanufacturing- and-3d-printing/secondary-finishing-processes/. [115] Marimuthu S, Triantaphyllou A, Antar M, Wimpenny D, Morton H, Beard M. Laser polishing of selective laser melted components. Int J Mach Tools Manuf 2015;95:97–104. [116] Spierings AB, Starr TL, Wegener K. Fatigue performance of additive manufactured metallic parts. Rapid Prototyp J 2013;19(2):88–94. [117] Alrbaey K, Wimpenny DI, Al-Barzinjy AA, Moroz A. Electropolishing of Remelted SLM stainless steel 316L parts using deep eutectic solvents: 3 × 3 full factorial design. J Mater Eng Perform 2016;25(7):2836–46. [118] Pyka G, Burakowski A, Kerckhofs G, Moesen M, Van Bael S, Schrooten J, et al. Surface modification of Ti6Al4V open porous structures produced by additive manufacturing. Adv Eng Mater 2012;14(6):363–70. [119] Mingareev I, Bonhoff T, El-Sherif AF, Meiners W, Kelbassa I, Biermann T, et al. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J Laser Appl 2013;25(5):052009. [120] Lamikiz A, Sánchez JA. López de Lacalle LN, Arana JL. Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf 2007;47(12– 13):2040–50. [121] Ma CP, Guan YC, Zhou W. Laser polishing of additive manufactured Ti alloys. Opt Lasers Eng 2017;93:171–7. [122] de Wild M, Schumacher R, Mayer K, Schkommodau E, Thoma D, Bredell M, et al. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit. Tissue Eng Part A 2013;19(23– 24):2645–54. [123] Qu J, Shih AJ, Scattergood RO, Luo J. Abrasive micro-blasting to improve surface integrity of electrical discharge machined WC–Co composite. J Mater Process Technol 2005;166(3):440–8. [124] Kennedy DM, Vahey J, Hanney D. Micro shot blasting of machine tools for improving surface finish and reducing cutting forces in manufacturing. Mater Des 2005;26(3):203–8. [125] Wang X, Li S, Fu Y, Gao H. Finishing of additively manufactured metal parts by abrasive flow machining. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 2470–2. [126] Bagehorn S, Wehr J, Maier HJ. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. Int J Fatigue 2017;102:135–42. [127] Boschetto A, Bottini L, Veniali F. Surface roughness and radiusing of Ti6Al4V selective laser melting-manufactured parts conditioned by barrel finishing. Int J Adv Manuf Technol 2018;94(5–8):2773–90. [128] Yang L, Gu H, Lassell A. Surface treatment of Ti6Al4V parts made by powder bed fusion additive manufacturing processes using electropolishing. In: Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium; 2014 Aug 4–6; Austin, TX, USA; 2014. p. 268–77. [129] Yasa E, Kruth JP, Deckers J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann 2011;60 (1):263–6. [130] Hashimoto F, Yamaguchi H, Krajnik P, Wegener K, Chaudhari R, Hoffmeister HW, et al. Abrasive fine-finishing technology. CIRP Ann 2016;65(2):597–620. [131] Strickstrock M, Rothe H, Grohmann S, Hildebrand G, Zylla IM, Liefeith K. Influence of surface roughness of dental zirconia implants on their mechanical stability, cell behavior and osseointegration. BioNanoMaterials 2017;18(1–2):20160013. [132] Klotz UE, Tiberto D, Held F. Additive manufacturing of 18-Karat yellow-gold alloys. In: Proceedings of the 30th Santa Fe Symposium on Jewelry Manufacturing Technology; 2016 May 15–18; Albuquerque, NM, USA; 2016. p. 255–72. [133] Galimberti G, Doubrovski M, Guagliano M, Previtali B, Verlinden JC. Investigating the links between the process parameters and their influence on the aesthetic evaluation of selective laser melted parts. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2016 Aug 8–10; Austin, TX, USA; 2016. p. 2367–86. [134] Liu C, Liu Z, Wang B. Modification of surface morphology to enhance tribological properties for CVD coated cutting tools through wet microblasting post-process. Ceram Int 2018;44(3):3430–9. [135] Tan KL, Yeo SH. Surface modification of additive manufactured components by ultrasonic cavitation abrasive finishing. Wear 2017;378– 379:90–5. [136] Guo J, Kum CW, Au KH, Tan ZE, Wu H, Liu K. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing. Opt Express 2016;24(12):13542–54. [137] Delfs P, Li Z, Schmid HJ. Mass finishing of laser sintered parts. In: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium; 2015 Aug 10–12; Austin, TX, USA; 2015. p. 514–26. [138] Javier Gil F, Planell JA, Padrós A, Aparicio C. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent Mater 2007;23(4):486–91. [139] Grubova I, Priamushko T, Surmeneva M, Korneva O, Epple M, Prymak O, et al. Sand-blasting treatment as a way to improve the adhesion strength of hydroxyapatite coating on titanium implant. J Phys Conf Ser 2017;830:012109. [140] Felix C. Surface treatment for medical parts [Internet]. Cincinnati: Gardner Business Media Inc.; c2019 [updated 2007 Jul 16; cited 2018 Jun 30]. Available from: https://www.productionmachining.com/articles/surfacetreatment- for-medical-parts(1). [141] Lorenz KA, Jones JB, Wimpenny DI, Jackson MR. A review of hybrid manufacturing. In: Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium; 2015 Aug 10–12; Austin, TX, USA; 2015. p. 96–108. [142] Lauwers B, Klocke F, Klink A, Tekkaya AE, Neugebauer R, Mcintosh D. Hybrid processes in manufacturing. CIRP Ann 2014;63(2):561–83. [143] Nagel JKS, Liou FW. Hybrid manufacturing system modeling and development. In: Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference; 2012 Aug 12–15; Chicago, IL, USA. New York: The American Society of Mechanical Engineers; 2012. p. 189–98. [144] Flynn JM, Shokrani A, Newman ST, Dhokia V. Hybrid additive and subtractive machine tools—research and industrial developments. Int J Mach Tools Manuf 2016;101:79–101. [145] Whitesides GM. The origins and the future of microfluidics. Nature 2006;442 (7101):368–73. [146] Amin R, Knowlton S, Hart A, Yenilmez B, Ghaderinezhad F, Katebifar S, et al. 3D-printed microfluidic devices. Biofabrication 2016;8(2):022001. [147] Steigert J, Haeberle S, Brenner T, Müller C, Steinert CP, Koltay P, et al. Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 2007;17 (2):333–41. [148] Ho CM, Ng SH, Li KH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip 2015;15(18):3627–37. [149] Shiu PP, Knopf GK, Ostojic M, Nikumb S. Rapid fabrication of micromolds for polymeric microfluidic devices. In: Proceedings of the 2007 Canadian Conference on Electrical and Computer Engineering; 2007 Apr 22–26; Vancouver, BC, Canada. New York: IEEE; 2007. p. 8–11. [150] Shen YK, Lin JD, Hong RH. Analysis of mold insert fabrication for the processing of microfluidic chip. Polym Eng Sci 2009;49(1):104–14. [151] Becker H, Locascio LE. Polymer microfluidic devices. Talanta 2002;56 (2):267–87. [152] Sawa Y, Yamashita K, Kitadani T, Noda D, Hattori T. Fabrication of high hardness micro mold using double layer nickel electroforming. In: Proceedings of the 2008 International Symposium on Micro-Nano Mechatronics and Human Science; 2008 Nov 6–9; Nagoya, Japan. New York: IEEE; 2008. p. 402–7. [153] Zhang N, Srivastava AP, Browne DJ, Gilchrist MD. Performance of nickel and bulk metallic glass as tool inserts for the microinjection molding of polymeric microfluidic devices. J Mater Process Technol 2016;231:288–300. [154] Kim K, Park S, Lee JB, Manohara H, Desta Y, Murphy M, et al. Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsyst Technol 2002;9(1–2):5–10. [155] GE Additive. How additive is helping innovators transform dental implantology [Internet] General Electric.; c2019 [cited 2019 Apr 13] Available from: https://www.ge.com/additive/case-studies/how-additivehelping- innovators-transform-dent-al-implantology. [156] 3D Systems. Direct metal 3D printing brings growth benefits to MicroDent dental lab [Internet]. Valencia: 3D Systems, Inc.; c2019 [cited 2018 Jun 30]. Available from: https://www.3dsystems.com/learning-center/case-studies/ direct-metal-3d-printing-brings-growth-benefits-microdent-dental-lab. [157] Nyce AC. An assessment of the 2026 U.S. markets and technology for jewelry manufactured by 3D-precious metal printing (3D-PMP) of gold, platinum, and palladium powders [Internet]. Birmingham: Cookson Precious Metals Ltd.; c2015 [cited 2018 Jun 30]. Available from: https://www.cooksongoldemanufacturing. com/img/downloads/3DPMP_Jewelry_markets_2026.pdf. [158] Zito D, Allodi V, Sbornicchia P, Rappo S. Why should we direct 3D print jewelry? A comparison between two thoughts: today and tomorrow. In: Proceedings of the 31th Santa Fe Symposium on Jewelry Manufacturing Technology; 2017 May 21–24; Albuquerque, NM, USA; 2017. p. 515–56. [159] Pogliani C, Alberto A. Case study of problems and their solutions for making quality jewelry using selective laser melting (SLM) technology. In: Proceedings of the 30th Santa Fe Symposium on Jewelry Manufacturing Technology; 2016 May 15–18; Albuquerque, NM, USA; 2016. p. 431–58.
相关推荐: