数列求和的几种情形
Sn?n(a1?an)n(n?1)?na1?d am-an??m?n?d 22一、分组法
例1 求Sn?1?3?5?7?
变式练习1:已知数列?an?的前n项和Sn?n2?50n,试求: (1)an的通项公式;
(2)记bn?an,求?bn?的前n项和Tn
二、倒序相加
1
?(?1)n?1(2n?1).
n个2Sn??a1?an??(a1?an)??(a1?an)
?n(a1?an)
Sn?n(a1?an) 22o2o2o2o例2 求sin1+sin2+sin3+.......sin89
三、错位相减
an?a1qn?1a1(1?qn)a1?anq?(q?0且q?1 ) Sn?1-q1-q例3 Sn?1?2x?3x2?
?nxn?1(x?0)
变式练习3(1)已知数列?an?的通项an?n.2n,求其n项和Sn
2
?1?(2)已知数列?an?的通项an??2n?1?.??,求其n项和Sn
?3?
四、裂项相消
例4 已知数列{an}的通项公式为an?
变式练习4:(1)
n1,求前n项和.
n(n+1)111???1?32?43?5?1.
n?(n?2)3
(2)求数列
1111,,,...,,...的前n项和Sn
1?22?32?3n?n?1在数列?an?中,a1?1,an?an?1?1,?n?2?n?n?1?
?1?写出数列的前5项;?2?求数列?an?的通项公式.
已知数列{an}满足an?1?an?2n?1,a1?1,求数列{an}的通项公式。
4
111,1??,……, 2241111??+……+n?1的和.
242111解:∵ an?1????n?1
24211?()n2?2?1 ?n?1121?2111∴Sn?1?(1?)?(1??)?
224111?(1????n?1)
24211?(2?1)?(2?)?(2?2)
221??(2?n?1)
2111?2n?(1????n?1)
2421?2n?2?n?1
2求数列1,1?
解:①若x=1,则Sn=1+2+3+…+n = ②若x≠1,则Sn?1?2x?3x2? xSn?x?2x2?3x3?两式相减得:
n(n?1) 2?nxn?1
?nxn
(1?x)Sn?1?x?x2+…+xn?1?nxn
1?xn?nxn ?1?x1?xnnxn∴ Sn? ?2(1?x)?1x
5
相关推荐: