天津市北辰区2019-2020学年中考数学模拟试题(1)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )
A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球” B.从一副扑克牌中任意抽取一张,这张牌是“红色的” C.掷一枚质地均匀的硬币,落地时结果是“正面朝上” D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6 2.要使式子A.x≠1
x?1有意义,x的取值范围是( ) xB.x≠0
C.x>﹣1且≠0
D.x≥﹣1且x≠0
3.下列图形中,是轴对称图形的是( )
A. B. C. D.
4.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( ) A.1.05×105
B.0.105×10﹣4
C.1.05×10﹣5
D.105×10﹣7
5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为 A.60元 B.70元 C.80元 D.90元
6.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )
已知:如图,在VABC中,点D,E,F分别在边AB,AC,BC上,且DE//BC,DF//AC, 求证:VADE∽VDBF.
证明:①又QDF//AC,②QDE//BC,③??A??BDF,④??ADE??B,
?VADE∽VDBF.
A.③②④① B.②④①③ C.③①④② D.②③④①
7.按如下方法,将△ABC的三边缩小的原来的
1,如图,任取一点O,连AO、BO、CO,并取它们的2中点D、E、F,得△DEF,则下列说法正确的个数是( ) ①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
8.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )
A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144
9.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( ) A.x(x+1)=210 C.2x(x﹣1)=210
B.x(x﹣1)=210 D.
1x(x﹣1)=210 210.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得 A.
B.
C. D.
11.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为( ) A.﹣
1 3B.﹣3 C.
1 3D.3
12.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32° B.64° C.77° D.87°
二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题: 已知:∠ACB是△ABC的一个内角. 求作:∠APB=∠ACB. 小明的做法如下: 如图
①作线段AB的垂直平分线m;
②作线段BC的垂直平分线n,与直线m交于点O; ③以点O为圆心,OA为半径作△ABC的外接圆; ④在弧ACB上取一点P,连结AP,BP. 所以∠APB=∠ACB. 老师说:“小明的作法正确.” 请回答:
(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____; (2)∠APB=∠ACB的依据是_____.
14.函数y=2x?3中自变量x的取值范围是_____. x?115.因式分解:a2(a?b)?4(a?b)=___.
16.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为_____.
17.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是
1,则n=_____. 318.如图Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中点,P是直线BC上一点,把△BDP沿PD所在直线翻折后,点B落在点Q处,如果QD⊥BC,那么点P和点B间的距离等于____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点
(1)MN的长等于_______,
(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)
20.(6分)为提高城市清雪能力,某区增加了机械清雪设备,现在平均每天比原来多清雪300立方米,现在清雪4 000立方米所需时间与原来清雪3 000立方米所需时间相同,求现在平均每天清雪量. 21.(6分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪淘尽,千古风流数人物; 而立之年督东吴,早逝英年两位数; 十位恰小个位三,个位平方与寿符; 哪位学子算得快,多少年华属周瑜?
22.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点
E.
(1)求证:∠A=∠ADE;
(2)若AD=8,DE=5,求BC的长.
23.∠ACB=∠ECD=90°A,C,D在同一条直线上,(8分)已知如图①Rt△ABC和Rt△EDC中,,点M,N,F分别为AB,ED,AD的中点,∠B=∠EDC=45°, (1)求证MF=NF
(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)
24.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.
(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;
(2)若某函数是反比例函数y?k(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在x反比例函数图象上,求m的值及反比例函数解析式;
相关推荐: