2020年柳州市高三数学上期中模拟试题(含答案)
一、选择题
?n2(n为奇数时)1.已知函数f(n)??2,若an?f(n)?f(n?1),则
?n(n为偶数时)?a1?a2?a3?L?a100?
A.0 C.?100
B.100 D.10200
2.已知不等式x2?2x?3?0的解集为A,x2?x?6?0的解集为B,不等式
x2+ax?b?0的解集为AIB,则a?b?( )
A.-3
B.1
C.-1
D.3
3.已知数列{an} 满足a1=1,且an?式为( )
11an?1?()n(n?2,且n∈N*),则数列{an}的通项公333nA.an?
n?2B.an?n?2 n3C.an=n+2 D.an=( n+2)·3n
4.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15?的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60?和30°,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)
A.33 23B.53 23C.73 23D.83 235.等比数列?an?中,a1?A.±4
1,q?2,则a4与a8的等比中项是( ) 811B.4 C.? D.
44的看台的某一列的正前方,和
,第一排和最后一排
6.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度从这一列的第一排和最后一排测得旗杆顶部的仰角分别为
的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)
A.
1 10B.
3 10C.
1 2D.
7 107.如图,有四座城市A、B、C、D,其中B在A的正东方向,且与A相距120km,
D在A的北偏东30°方向,且与A相距60km;C在B的北偏东30°方向,且与B相距
6013km,一架飞机从城市D出发以360km/h的速度向城市C飞行,飞行了15min,
接到命令改变航向,飞向城市B,此时飞机距离城市B有( )
A.120km B.606km C.605km D.603km
8.已知?ABC的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A.
3 4B.
5 6C.
7 8D.
2 39.若a,b,c,d∈R,则下列说法正确的是( ) A.若a>b,c>d,则ac>bd C.若a>b>0,c>d>0,则
B.若a>b,c>d,则a+c>b+d D.若a>b,c>d,则a﹣c>b﹣d
cd? abx?0(k为常数),若目标函数z=x+3y的最大值为8,10.已知x,y满足条件{y?x2x?y?k?0则k=( ) A.-16
B.-6
8C.-
3D.6
11.已知等差数列?an?的前n项和为Sn,若a3?a4?a11?18则S11?( ) A.9
B.22
C.36
D.66
12.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列?an?,则此数列的项数为( ) A.134
B.135
C.136
D.137
二、填空题
13.设数列{an}的首项a1=
3,前n项和为Sn,且满足2an+1+Sn=3(n∈N*),则满足218S2n8??的所有n的和为________. 17Sn714.已知各项为正数的等比数列?an?满足a7?a6?2a5,若存在两项am,an使得
am?an?22a1,则
14?的最小值为__________. mn15.设等差数列?an?,?bn?的前n项和分别为Sn,Tn若对任意自然数n都有
Sn2n?3a9a3??,则的值为_______.
Tn4n?3b5?b7b8?b416.如图所示,位于A处的信息中心获悉:在其正东方向40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东θ的方向即沿直线CB前往B处救援,则cos??______________.
17.点D在VABC的边AC上,且CD?3AD,BD?2,sin?ABC3,则?233AB?BC的最大值为______.
18.在?ABC中,a?4,b?5,c?6,则
sin2A?__________. sinC19.正项等比数列?an?满足a4?a2?18,a6?a2?90,则?an?前5项和为________. 20.已知数列?an?的通项an?1,则其前15项的和等于_______.
n?1?n三、解答题
21.在?ABC中,角A,B,C所对的边分别为a,b,c,且
3cosAcosC(tanAtanC?1)?1.
(Ⅰ)求sinB的值; (Ⅱ)若a?c?33,b?3,求的面积.
???A?22.在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin??.
3??(1)求A;
(2)若△ABC的面积S=
32
c,求sin C的值. 423.已知{an}是等差数列,{bn}是各项均为正数的等比数列,且b1=a1=1,b3=a4,b1+b2+b3=a3+a4.
(1)求数列{an},{bn}的通项公式; (2)设cn=anbn,求数列{cn}的前n项和Tn.
24.VABC中,内角A,B,C的对边分别为a,b,c.已知acosC?ccosA?a. (1)求证:A?B; (2)若A??6,VABC的面积为3,求VABC的周长.
25.数列?an?对任意n?N*,满足an?1?an?1,a3?2. (1)求数列?an?通项公式;
?1?(2)若bn????n,求?bn?的通项公式及前n项和. ?3?226.数列?an?中,a1?1 ,当n?2时,其前n项和Sn满足Sn?an?(Sn?).
an12(1)求Sn的表达式; (2)设bn=
Sn,求数列?bn?的前n项和Tn. 2n?1
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【解析】
试题分析:由题意可得,当n为奇数时,an?f(n)?f(n?1)?n2??n?1???2n?1;当
2n为偶数时,an?f(n)?f(n?1)??n2??n?1?2?2n?1;所以
a1?a2?a3?L?a100??a1?a3?L?a99???a2?a4?L?a100???2?1?3?5?L?99??99?2?2?4?6?L?100??99?100,
故选B.
考点:数列的递推公式与数列求和.
【方法点晴】本题主要考查了数列的递推公式与数列求和问题,考查了考生的数据处理与
n2(当n为奇数时)运算能力,属于中档题.本题解答的关键是根据给出的函数f?n??{2及
?n(当n为偶数时)an?f(n)?f(n?1)分别写出n为奇数和偶数时数列?an?的通项公式,然后再通过分
组求和的方法得到数列?an?前100项的和.
2.A
解析:A 【解析】 【分析】
根据题意先求出集合A,B,然后求出AIB=(?1,2),再根据三个二次之间的关系求出
a,b,可得答案.
【详解】
由不等式x2?2x?3?0有-1 因为不等式x2+ax?b?0的解集为AIB, 所以方程x2+ax?b=0的两个根为?1,2. ??1?2??a?a=?1,即?. 由韦达定理有:?b??2?1?2?b??所以a?b??3. 故选:A. 【点睛】 本题考查二次不等式的解法和三个二次之间的关系,属于中档题. 3.B 解析:B 【解析】 试题分析:由题可知,将an?11an?1?()n(n?2,两边同时除以33,整理得an?,得出 ,运用累加法,解得 考点:累加法求数列通项公式 n?2; 3n4.B
相关推荐: