.
念并准确识图求出OA的长度是解题的关键.
9.(3分)(2016?广东)已知方程x﹣2y+3=8,则整式x﹣2y的值为( ) A.5
B.10 C.12 D.15
【考点】等式的性质.
【分析】根据等式的性质1:等式两边同时加上﹣3,可得x﹣2y=5. 【解答】解:由x﹣2y+3=8得:x﹣2y=8﹣3=5, 故选A
【点评】本题考查了等式的性质,非常简单,属于基础题;熟练掌握等式的性质是本题的关键,也运用了整体的思想.
10.(3分)(2016?广东)如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是( )
A. B. C.
D.
【考点】动点问题的函数图象. 【专题】动点型;函数思想.
【分析】分P在AB、BC、CD、AD上四种情况,表示出y与x的函数解析式,确定出大致图象即可.
【解答】解:设正方形的边长为a, 当P在AB边上运动时,y=ax;
;.
.
当P在BC边上运动时,y=a(2a﹣x)=﹣ax+a2; 当P在CD边上运动时,y=a(x﹣2a)=ax﹣a2; 当P在AD边上运动时,y=a(4a﹣x)=﹣ax﹣2a2,
大致图象为:故选C.
【点评】此题考查了动点问题的函数图象,解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.
二、填空题(共6小题,每小题4分,满分24分) 11.(4分)(2016?广东)9的算术平方根是 3 . 【考点】算术平方根.
【分析】9的平方根为±3,算术平方根为非负,从而得出结论. 【解答】解:∵(±3)2=9, ∴9的算术平方根是|±3|=3. 故答案为:3.
【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.
12.(4分)(2016?广东)分解因式:m2﹣4= (m+2)(m﹣2) . 【考点】因式分解-运用公式法.
【专题】计算题.
【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).
【解答】解:m2﹣4=(m+2)(m﹣2). 故答案为:(m+2)(m﹣2).
【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.
;.
.
13.(4分)(2016?广东)不等式组【考点】解一元一次不等式组.
的解集是 ﹣3<x≤1 .
【专题】计算题.
【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集. 【解答】解:解①得x≤1, 解②得x>﹣3,
所以不等式组的解集为﹣3<x≤1. 故答案为﹣3<x≤1.
【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
14.(4分)(2016?广东)如图,把一个圆锥沿母线OA剪开,展开后得到扇形AOC,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中(计算结果保留π).
的长是 10π cm
,
【考点】圆锥的计算;弧长的计算.
【分析】根据的长就是圆锥的底面周长即可求解.
【解答】解:∵圆锥的高h为12cm,OA=13cm, ∴圆锥的底面半径为
=5cm,
;.
.
∴圆锥的底面周长为10πcm, ∴扇形AOC中故答案为:10π.
【点评】本题考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于展开扇形的弧长,难度不大.
15.(4分)(2016?广东)如图,矩形ABCD中,对角线AC=2
,E为BC边上
的长是10πcm,
一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B′处,则AB= .
【考点】矩形的性质;翻折变换(折叠问题).
【分析】先根据折叠得出BE=B′E,且∠AB′E=∠B=90°,可知△EB′C是直角三角形,由已知的BC=3BE得EC=2B′E,得出∠ACB=30°,从而得出AC与AB的关系,求出AB的长.
【解答】解:由折叠得:BE=B′E,∠AB′E=∠B=90°, ∴∠EB′C=90°, ∵BC=3BE, ∴EC=2BE=2B′E, ∴∠ACB=30°,
在Rt△ABC中,AC=2AB, ∴AB=AC=×2故答案为:
.
=
,
【点评】本题考查了矩形的性质和翻折问题,明确翻折前后的图形全等是本题的关键,同时还运用了直角三角形中如果一条直角边是斜边的一半,那么这条直角边所对的锐角是30°这一结论,是常考题型.
;.
相关推荐: