第十六章 偏导数与全微分
§1 偏导数与全微分的概念
1.求下列函数的偏导数: (1)u?xln(x?y); (2)u?(x?y)cos(xy); (3)u?arctan(4)u?xy?222y; xx; y;
(5)u?xyeysin(xy)(6)u?x?y.
x?u2xx222222解(1)?2xln(x?y)?x2?2x[ln(x?y)?2];
?xx?y2x?y2?u2y2x2y2?x2?2 . 22?xx?yx?y(2)
?u?cos(xy)?(x?y)(?sin(xy))y?cos(xy)?y(x?y)sin(xy);由x,y的?x对称性,
?u?cos(xy)?x(x?y)sin(xy). ?y(3)
?u??xyy1?u11x(?2)??2??; . 222y2y?yxx?yxx?y1?()1?()2xx(4)
?u1?ux?y?, ?x?2. ?xy?yy(5)
?u?yesin(xy)?xyesin(xy)cos(xy)y?y(1?xycos(xy))esin(xy),根据x,y的对?x称性,
?u?x(1?xycos(xy))esin(xy). ?y?u?u?xylnx?xyx?1. ?yxy?1?yxlny; ?y?x(6)
2.设
1?22ysin,x?y?0,?22x?yf(x,y)??
?0,x2?y2?0.?考察函数在(0,0)点的偏导数.
解 lim?xf(0,0)f(?x,0)?f(0,0)0?0?lim?lim?0,即fx(0,0)?0,而
?x?0?x?0?x?0?x?x?x?y?0lim?yf(0,0)?y?lim?y?0f(0,?y)?f(0,0)?lim?y?0?y?ysin1?021?y不存在,?limsin?y?0?y(?y)2fy(0,0)不存在.
3.证明函数u?证明 显然u?x2?y2在(0,0)点连续但偏导数不存在. x2?y2在(0,0)点连续,但
?x(?x)2?0?xu(0,0) lim?lim?lim?x?0?x?0?x?0?x?x?x不存在,由对称性lim?yu(0,0)?y?y?0不存在,因而u?x2?y2在(0,0)点的两个偏导数均不
存在.
4.求下列函数的全微分:
(1)u?x2?y2?z2;
yz(2)u?xe?e?x?y.
222解(1)du?dx?y?z?12x2?y2?z2d(x2?y2?z2)
?1x?y?zxx?y?zyz222(xdx?ydy?zdz)
yx?y?z222 ?222dx?dy?zx?y?z222dz.
(2)du?d(xe?e?x?y)?eyzdx?xeyz(zdy?ydz)?e?xdx?dy
?(eyz?e?x)dx?(xzeyz?1)dy?xyeyzdz.
5.求下列函数在给定点的全微分: (1)u?xx?y22在点(1,0)和(0,1);
(2)u?ln(x?y)在点(0,1)和(1,1); (3)u?2zx在点(1,1,1); yx在点(0,1). y(4)u?x?(y?1)arcsin解(1)du?dxx2?y2dxx?y22?xd(1x2?y2x)?dxx2?y2?x12(x2?y2)3d(x2?y2)
??(x?y)223(xdx?ydy)?y2dx?xydy(x?y)x?y2222,
所以,在点(1,0),du?0,在点(0,1),du?dx.
(2)du?2y11(dx?2ydy)?dx?dy,在点(0,1),du?dx?2dy;222x?yx?yx?y在点(1,1),du?1dx?dy. 2111x1x?u1xz?1?uxxz?1?u??2()zln,所以, (3)?(),??2(),?zzyy?y?xyzyyzy1x?1xx?11xxdu?()zdx?2()zdy?2()zlndz,
yzyyyzyzy故在(1,1,1)有,du?dx?dy.
(4)函数的定义域为{(x,y):0?x?yor0?y?x}.当x?0时,有
111du?dx?arcsinxdy?(y?1)yydx?xdy 2yxx1?2yy11xx(1?y)sgny?)dy,
2y2yxy?x?(1?(y?1)sgny2xy?x2)dx?(arcsin而当x?0时,由于lim?x?0f(x,y)?f(0,y)y?1arcsinxy?lim?(1?)不存在,所以x?0xxyxyf(0,y??y)?f(0,y)0?lim?0,?y?0?y?y在(0,y),fx(0,y)不存在,虽然fy(0,y)?lim?y?0但在点(0,y),du不存在,因而u?x?(y?1)arcsin6. 考虑函数f(x,y)在(0,0)点的可微性,其中
x在点(0,1)不可微. y1?xysin,x2?y2?0,?22x?yf(x,y)??
?0,x2?y2?0.??xf(0,0)f(?x,0)?f(0,0)0?0解 因为lim所以fx(0,0)?0,?lim?lim?0,
?x?0?x?0?x?0?x?x?x由对称性,fy(0,0)?0.若函数f(x,y)在(0,0)可微,则按可微的定义,应有
f(?x,?y)?f(0,0)?[fx(0,0)?x?fy(0,0)?y]??x?ysin是比??1, 22?x??y?x2??y2更高阶的无穷小,为此考察极限
?x?ysin?x?0?y?0lim1?x2??y2??lim?x?y?x2??y2?x?0?y?0sin1, 22?x??y由于
122(?x??y)?x?y?x?y1, sin2??22222222?x??y?x??y?x??y?x??y所以,lim?x?y?x2??y2?x?0?y?0sin1?0,故f(x,y)在(0,0)可微. 22?x??y7.证明函数
?x2y22,x?y?0,?22f(x,y)??x?y
?0,x2?y2?0?在(0,0)点连续且偏导数存在,但在此点不可微.
x2yxy1证明 因为2?x??x,所以limf(x,y)?0?f(0,0),即222x?02x?yx?yy?0f(x,y)在点(0,0)点连续,又
?xf(0,0)f(?x,0)?f(0,0)?lim?0,
?x?0?x?0?x?xlimlim?yf(0,0)?y?limf(0,?y)?f(0,0)?0,
?y?y?0?y?o所以,fx(0,0)?fy(0,0)?0.
若函数f(x,y)在(0,0)可微,则应有
?x2?y f(?x,?y)?f(0,0)?[fx(0,0)?x?fy(0,0)?y]?22(?x)?(?y)是比???x2??y2更高阶的无穷小量,为此考察极限
?x2?y?x2?ylim?lim,
223?x?0??x2??y2?x?0?y?0?y?0(?x??y)1令?y??x,当(?x,?y)沿直线?y??x趋于(0,0)时,lim?x2?y(?x2??y2)3?x?0?y??x?lim?x?0?x不?x?x2?y存在,即不是比?更高阶的无穷小量,因此f(x,y)在(0,0)不可微.
(?x)2?(?y)28.证明函数
1?22(x?y)sin,x2?y2?0,?22x?yf(x,y)??
?0,x2?y2?0?的偏导数存在,但偏导数在(0,0)点不连续,且在(0,0)点的任何邻域中无界,而f在原点
(0,0)可微.
111?2x(sin?cos),x2?y2?0,?222222x?yx?yx?y证明 fx(x,y)??
22?0,x?y?0,?
相关推荐: