精品文档
2n21357...(2n?1)(2n?1)因为lim?lim?0?1, n?1n??n??22n?11357...(2n?1)2n?1则由正项级数的比值判别法,得级数?收敛。
1357...(2n?1)n?1?n4(5)?;
n?1n!?(n?1)4(n?1)3(n?1)!?lim?0?1, 因为lim44n??n??nnn!n4则由正项级数的比值判别法,得级数?收敛。
n?1n!?
(6)?2nsinn?1??3n ;
n?1等价无穷n?1233因为limlim??1,
n???小代换n??n?32nsinn2n332n?1sin?2n?1?则由正项级数的比值判别法,得级数?2nsinn?1??3n收敛。
(7)?1(a,b?0); na?bn?1?1?1n1na?b因为lim?lim?,而调和级数?发散,
n??n??na?b1an?1nn则由正项级数的比较判别法的极限形式,得级数??1?n2?(8)???e?;
?n?1?n?1(a,b?0)发散。 na?bn?1?精品文档
精品文档
21?e?xx?x洛必达1?因为limx?lim?1?x2??1?limx21?lim?1, x2x???x???x???x???1法则e?e2xe?x1?n2?e?1n所以lim?1,而调和级数?发散,
n??1n?1nn2??1则由正项级数的比较判别法的极限形式,得级数???e?n?发散。
?n?1?n?enn!(9)?n;
n?1n?en?1(n?1)!enne(n?1)n?1因为lim?lim?lim?1, nn??n??(n?1)nn??enn!1??1?n?nn???enn!此时由正项级数的比值判别法不能得到级数?n的敛散性。
n?1n?nnn?1??1?1??????但是由于数列??1???是单调递增的,且lim?1???e,所以?1???e,
n??nn?n?????????en?1(n?1)!en?1(n?1)!enn!enn!e(n?1)n?1?从而,从而limn?0, ??1,即n?1nnnn??n(n?1)nen!1???1?n?nn??enn!此时,利用收敛级数的必要条件,可知级数?n是发散的。
n?1n?
4.判断下列级数是否收敛?若收敛,是条件收敛还是绝对收敛? (1)?(?1)nn?1??1??sin(nx)1?n1n1?(?1);(2);(3); (4) (?1)1?????;2n?nlnn2nn??n?1n?2n?12?nn??nln(n?1)n?1nn?12(5)?(?1); (6)?(?1); (7)?(?1). n?1n?13n!n?1n?1n?1?解:(1)?(?1)nn?11n;
精品文档
精品文档
因为?(?1)n?1?n1n??n?1?1n发散(p?级数的结论),所以级数?(?1)nn?1?1n不绝对
收敛;
对交错级数?(?1)nn?1??1n1n,由于1n?1?1n?,且limn??1n则由莱布尼兹定理,?0,
得交错级数?(?1)n?1n收敛;从而级数?(?1)nn?11n条件收敛。
(2)?(?1)nn?2?1; lnn??11111???(n?2),且调和级数?发散,则由正因为?(?1),而lnnn?2lnnlnnnn?2n?1nn??111??项级数的比较判别法,得级数?(?1)发散,即级数?(?1)n不lnnn?2lnnlnnn?2n?2n??绝对收敛; 对交错级数?(?1)nn?2??1111?0,则由莱布尼兹定?,由于,且limn??ln(n?1)lnnlnnlnnn?11理,得交错级数?(?1)收敛;从而级数?(?1)n条件收敛。
lnnlnnn?2n?2(3)?sin(nx); 2nn?1??sin(nx)sin(nx)11?,因为,且级数收敛(p?级数的结论),?2222nnnn?1n?对级数?n?1则由正项级数的比较判别法,得级数?n?1??sin(nx)sin(nx)收敛,即级数绝对收?2n2nn?1敛。
1?1?(4)?(?1)nn?1??;
2?n?n?1?n因为
?1?1?1?1?(?1)1??1???n?2n?n?n????n?1n?12?n?nn,而
精品文档
精品文档
1?1?1?1?1limnn?1???lim?1????1, n??n??22?n?n?2??1?1?1?n1?则由正项级数的根值判别法,得级数?(?1)n?1????n?1??收敛,
2n2n????n?1n?1?nnn1?1?即级数?(?1)nn?1??绝对收敛。
2?n?n?1?n(5)?(?1)nn?1?ln(n?1); n?1
??ln(n?1)ln(n?1)ln(n?1)11???因为?(?1),而,且?发散(p?n?1n?1n?1n?1n?1n?1n?1n?1n?级数的结论),
?ln(n?1)ln(n?1)??则由正项级数的比较判别法,得级数?(?1)发散,所以
n?1n?1n?1n?1n??级数?(?1)nn?1ln(n?1)不绝对收敛; n?1对交错级数
?(?1)nn?1?ln(n?1)n?1,令f(x)?lnx(x?2)x,则
1x?lnx11?lnx,从而当x?e时f?(x)?0,即当x?e时f?(x)?x?22xxf(x)?lnxln(n?2)ln(n?1)ln(n?1)?(n?2),又lim?0(因为单调递减;故
n??xn?2n?1n?11ln(n?1)ln(x?1)洛必达?0), limlimx?1?0,所以limn??x???x???n?1x?1法则1?ln(n?1)ln(n?1)则由莱布尼兹定理,得交错级数?(?1)收敛,从而?(?1)n也
n?1n?1n?2n?1n??收敛。故级数?(?1)nn?1ln(n?1)条件收敛。 n?1
(6)?(?1)n?1n?1?n3n?1;
精品文档
相关推荐: