全优好卷
雅安中学高一上期月考试题(10月)
数 学 试 题
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分150分,考试时间120分钟。考试结束后,将答题卷和机读卡一并收回。
第Ⅰ卷(选择题,共50分)
一、选择题:共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的.
1,3,4?,B??2,3,4?,那么CU(A?B)?( ) 1,2,3,4?,A??1.已知U??1,2? (B)?1,2,3,4? (C)? (D)??? (A)?},那么 ( ) 2.如果A={x|x??1A.0?A B.{0}?A C.??A D.{0}?A 3.给出下列四个对应:
其构成映射的是( )
A.只有①② B.只有①④ C.只有①③④ D.只有③④
4.下列图象中不能作为函数图象的是( )
?x2?1x?1?5.设函数f(x)??2,则f(f(3))?( )
x?1??xA.
1 5B.3 C.
2 3D.
13 9
2,3],则y6.已知函数y定义域是[?的定义域是( ) ?f(x?1)?f(2x?1)A.[0,5] B.[?1,4] C.[?5,5] D.[?3,7] 2 全优好卷
全优好卷
7.下列函数中,既是奇函数又是增函数的为( )
A.y?x?1
B.y??x
2C.y?1 xD.y?x|x|
9.已知不等式kx?2x?6k?0 ,若不等式的解集是R,则k的取值范围( ) A.(??,?26666)?(,??) B.(?,) 666666) D.(,??) 66 C.
(??,?10. 关于x的方程x2?3x?2??a有4个不同实数解,则a的取值范围是( ) A. (0,) B. (?1411,??) C. (??,44? D. (?1,0)
4第Ⅱ卷(非选择题,共100分)
二、填空题:共5小题,把答案填在题中横线上.(25分)
11.设集合A?{(x,y)|y??4x?6},B?{(x,y)|y?5x?3},则A?B= . 12.满足条件{1,2,3}?M?{1,2,3,4,5,6}的集合M的个数是 .
?13.函数f(x)?x?4x?1的值域是
(x?1)014.函数f (x ) =+?x2?x?2的定义域是 .
x15.若函数f(x)是定义在R上的偶函数,在(-∞,0)上是增函数,且f(2)=0,则使f(x)<0的x的取值范围是 .
三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤.(75分) 16.(本小题13分)全集U=R,若集合A?(1)求A
全优好卷
?x|3?x?10?,B??x|2?x?7?,则
B,AB, (CUA)(CUB);
(2)若集合C={x|x?a},若A?C?A,求a的取值范
全优好卷
17.(本小题13分)设A={x|x-ax+a-19=0},B={x|x-5x+6=0},C={x|x2+2x-8=0}.
(1)若A=B,求a的值;
(2)若?A∩B,A∩C=?,求a的值 18 (本小题满分13分)已知函数f(x)?x?2ax?2,x?[?5,5].
(1)当a??1时,求函数f(x)的最小值、最大值;
(2) 当f(x)在[?5,5]上是单调函数时,求实数a的取值范围。
19.(本小题满分12分)为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算:电费每月用电不超过100度时,按每度0.57元计算;每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算. (Ⅰ)设月用电x度时,应交电费y元,写出y关于x的函数关系式; (Ⅱ)小明家第一季度缴纳电费情况如下:
月份 交费金额
全优好卷
22
2
2
一月 76元 二月 63元 三月 45.6元 合计 184.6元 问小明家第一季度共用电多少度? 全优好卷
20.(本小题满分12分)
已知y?f(x)是定义在R上的不恒为零的函数,且对于任意的a,b?R,都满足:
f(a?b)?af(b)?bf(a)。
(1)求f(1)的值
(2)判断y?f(x)的奇偶性,并证明你的结论。
21.(本小题12分) 函数f(x)?ax?b12f()?. 是定义在(-1,1)上的奇函数,且2251?x(1)确定函数f(x)的解析式;
(2)试判断f(x)在(-1,1)的单调性,并予以证明; (3)若f(t?1)?f(t)?0,求实数t的取值范围.
全优好卷
相关推荐: