?EF?AG,AF?PG
1设正方形ABCD边长为a,则AB?a,AF?PG?a
21?AG?EF?AE?AF?1?a2?4224?a2, 24?a2
,?BG?AB?AG?a?2在Rt?BPG中,QBG2?PG2?BP2 4?a2212?(a?)?(a)?(3)2
22解得:a2?2?2,
?S?APD?S?APB?S?AEB?S?APB?③正确;
114?a212?1
,?AB(EF?PG)?a(?a)?22222?S正方形ABCD?a2?2?2;
?④正确;
故选:A.
二.填空题
11.(2020?哈尔滨模拟)如图,在菱形ABCD中,连接BD,点E在AB上,连接CE交BD于点F,作FG?BC于点G,?BEC?3?BCE,BF?535DF,若FG?,则AB的长为 . 1142
21
【解析】连接AC交BD于M,如图所示: 设BF?5a,则DF?11a, ?BD?16a,
Q四边形ABCD是菱形,
?AC?BD,?ACB??ACD,AB?BC,AB//CD,BM?DM?12BD?8a, ?FM?BM?BF?3a,
QAB//CD, ??BEC??ECD, Q?BEC?3?BCE, ??ECD?3?BCE,
??ACE??BCE, ?CF平分?ACB, QFG?BC,FM?AC,
?FG?FM?34, ?3a?34, ?a?14, ?BF?54,BM?2, 在Rt?FMC和Rt?FGC中,??CF?CF?FM?FG,
?Rt?FMC?Rt?FGC(HL), ?CG?CM,
在Rt?BFG中,BG?BF2?FG2?(534)2?(4)2?1,
设CG?CM?x,则BC?x?1,
在Rt?BMC中,由勾股定理得:22?x2?(x?1)2, 解得:x?32, ?AB?BC?52.
22
12.(2020?哈尔滨模拟)如图,在?ABC中,?ACB?90?,点E为AB中点,点L在AC的延长线上,连接LE交BC于点D,过点E作AB的垂线交?LCB的平分线于点F,若?CAB?3?L,EF?3,则DL的长为 6 .
【解析】如图,在LE上取一点H,使得LH?CH,连接EC,设?L?x,则?A?3x.
Q?ACB?90?,AE?EB,
?CE?AAE?EB, ??EAC??A?3x, Q?ECA??L??AEL, ??CEL?2x,
QHC?HL, ??L??HCL?x,
??CHE??L??HCL?2x,
23
??CHE??CEH,
?CE?CH, QCF平分?LCD, ??LCF??FCD?45?, Q?F??LEF??L??LCF,
??F?90??(180??4x)?x?45?, ??F?135??3x,
Q?FCE?45???ECB?45??90??3x?135??3x, ??F??ECF,
?EC?EF?3, ?CH?3,
Q?L??ADH?90?,?HCD??HCL?90?,?L??HCL,
??HCD??HDC, ?CH?DH, ?LH?CH?DH?3, ?LD?6.
故答案为6.
13.(2019秋?蚌埠期末)如图,正方形ABCD的对角线AC上有一点E,且CE?4AE,点F在DC的延长
CF?2, 线上,连接EF,过点E作EG?EF,交CB的延长线于点G,若AB?5,则线段BG的长是 5 .
【解析】如图,作EH?EC交CG于H. 则?CEH?90?,
QEG?EF, ??GEF?90?, ??GEH??FEC,
24
Q四边形ABCD是正方形,AB?5,
??GCF??BCD?90?,BC?AB?5,AC?2AB?52,?ACB?45?, ??ECF?90??45??135?,?CEH是等腰直角三角形, ?EH?EC,?EHC?45?, ??EHG?135???ECF,
??HEG??CEF?在?HEG和?CEF中,?EH?EC,
??EHG??ECF???HEG??CEF(ASA),
?HG?CF?2,
QCE?4AE,AC?2AB?52,
?CE?42, ?CH?2CE?8,
?CG?HG?CH?10, ?BG?CG?BC?5;
故答案为:5.
CD上的点,14.(2020?河北模拟)如图,在正方形ABCD中,且AE?DF.E,AF,F分别是边AD,AC?2,DE交于点O,P为AB的中点,则OP? 1 . 2
25
相关推荐: