ʵÑéÒ» Á¬ÐøÊ±¼äÐźŵÄʱÓòºÍƵÓò·ÖÎö Ò». ʵÑéÄ¿µÄ
1. ÊìϤMATLAB Èí¼þƽ̨£»
2. ÕÆÎÕMATLAB ±à³Ì·½·¨¡¢³£ÓÃÓï¾äºÍ¿ÉÊÓ»¯»æÍ¼¼¼Êõ£» 3. ±à³ÌʵÏÖ³£ÓÃÐźż°ÆäÔËËãMATLAB ʵÏÖ·½·¨¡£ 4. ±à³ÌʵÏÖ³£ÓÃÐÅºÅµÄÆµÓò·ÖÎö ¶þ. ʵÑéÔÀí
1¡¢Á¬ÐøÊ±¼äÐźŵÄÃèÊö £¨1£©ÏòÁ¿±íʾ·¨
Á¬ÐøÐźÅÊÇÖ¸×Ô±äÁ¿µÄȡֵ·¶Î§ÊÇÁ¬ÐøµÄ£¬ÇÒ¶ÔÓÚÒ»ÇÐ×Ô±äÁ¿µÄȡֵ£¬³ýÁËÓÐÈô¸É¸ö²»Á¬ÐøµãÖ®Í⣬ÐźŶ¼ÓÐÈ·¶¨µÄÖµÓëÖ®¶ÔÓ¦¡£ÑϸñÀ´Ëµ£¬MATLAB ²¢²»ÄÜ´¦ÀíÁ¬ÐøÐźţ¬¶øÊÇÓõÈʱ¼ä¼ä¸ôµãµÄÑùÖµÀ´½üËÆ±íʾÁ¬ÐøÐźš£µ±È¡Ñùʱ¼ä¼ä¸ô×㹻Сʱ£¬ÕâЩÀëÉ¢µÄÑùÖµ¾ÍÄܽϺõؽüËÆÁ¬ÐøÐźš£ ¾ØÕóÊÇMATLAB ½øÐÐÊý¾Ý´¦ÀíµÄ»ù±¾µ¥Ôª£¬¾ØÕóÔËËãÊÇMATLAB ×îÖØÒªµÄÔËË㡣ͨ³£ÒâÒåÉϵÄÊýÁ¿£¨Ò²³ÆÎª±êÁ¿£©ÔÚMATLAB ϵͳÖÐÊÇ×÷Ϊ1¡Á1 µÄ¾ØÕóÀ´´¦ÀíµÄ£¬¶øÏòÁ¿Êµ¼ÊÉÏÊǽöÓÐÒ»ÐлòÕßÒ»ÁеľØÕó¡£Í¨³£ÓÃÏòÁ¿±íʾÐźŵÄʱ¼äȡֵ·¶Î§£¬Èçt = -5:5£¬µ«ÐźÅx(t)¡¢ÏòÁ¿t ±¾ÉíµÄϱ궼ÊÇ´Ó1 ¿ªÊ¼µÄ£¬Òò´Ë±ØÐëÓÃÒ»¸öÓëÏòÁ¿x µÈ³¤µÄ¶¨Î»Ê±¼ä±äÁ¿t£¬ÒÔ¼°ÏòÁ¿x£¬²ÅÄÜÍêÕûµØ±íʾÐòÁÐx(t)¡£ÔÚMATLAB ¿ÉÊÓ»¯»æÍ¼ÖУ¬¶ÔÓÚÒÔt Ϊ×Ô±äÁ¿µÄÁ¬ÐøÐźţ¬ÔÚ»æÍ¼Ê±Í³Ò»ÓÃ
plot º¯Êý£»¶ø¶Ôn Ϊ×Ô±äÁ¿µÄÀëÉ¢ÐòÁУ¬ÔÚ»æÍ¼Ê±Í³Ò»ÓÃstem º¯Êý¡£
£¨2£©·ûºÅÔËËã±íʾ·¨
·ûºÅ¶ÔÏó(Symbolic Objects ²»Í¬ÓÚÆÕͨµÄÊýÖµ¼ÆËã)ÊÇMatlab ÖеÄÒ»ÖÖÌØÊâÊý¾ÝÀàÐÍ£¬Ëü¿ÉÒÔÓÃÀ´±íʾ·ûºÅ±äÁ¿¡¢±í´ïʽÒÔ¼°¾ØÕó£¬ÀûÓ÷ûºÅ¶ÔÏóÄܹ»ÔÚ²»¿¼ÂÇ·ûºÅËù¶ÔÓ¦µÄ¾ßÌå ÊýÖµµÄÇé¿öÏÂÄܹ»½øÐдúÊý·ÖÎöºÍ·ûºÅ¼ÆËã(symbolic math operations)£¬ÀýÈç½â´úÊý·½³Ì¡¢Î¢·Ö·½³Ì¡¢½øÐоØÕóÔËËãµÈ¡£ ·ûºÅ¶ÔÏóÐèҪͨ¹ýsym »òsyms º¯ÊýÀ´Ö¸¶¨, ÆÕͨµÄÊý×Öת»»³É·ûºÅÀàÐͺóÒ²¿ÉÒÔ±»×÷Ϊ·ûºÅ¶ÔÏóÀ´´¦Àí.
ÎÒÃÇ¿ÉÒÔÓÃÒ»¸ö¼òµ¥µÄÀý×ÓÀ´±íÃ÷ÊýÖµ¼ÆËãºÍ·ûºÅ¼ÆËãµÄÇø±ð: 2/5+1/3 µÄ½á¹ûΪ0.7333(double ÀàÐÍÊýÖµÔËËã), ¶øsym(2)/sym(5)+sym(1)/sym(3)µÄ½á¹ûΪ11/15, ÇÒÕâÀï11/15 ÈÔÈ»ÊÇÊôÓÚsym ÀàÐÍ, ÊÇ·ûºÅÊý¡£Èç¹ûÒ»¸öÐźſÉÒÔÓ÷ûºÅ±í´ïʽÀ´±íʾ£¬Ôò¿ÉÒÔͨ¹ý·ûºÅº¯ÊýרÓûæÍ¼ÃüÁîezplot()º¯ÊýÀ´»æ³öÐźŵIJ¨ÐΡ£ 2¡¢³£¼ûÐźŵÄmatlab ÃèÊö £¨1£©µ¥Î»³å¼¤ÐźÅt=-10:0.01:10; plot(t,dirac(t))
£¨2£©µ¥Î»½×Ô¾ÐźÅu(t) t=-10:0.01:10;
(t) dirac£¨£©
f1= heaviside(t) figure(1); plot(t,f1); f2= stepfun(t,0) figure(2) plot(t,f2); (3) ÃÅÐźŠt=-10:0.01:10; figure(1);
plot(t,heaviside(t+2)- heaviside(t-2)); figure(2)
plot(t,stepfun(t,-2)- stepfun(t,2)); (4) ·ûºÅº¯Êý sign£¨£©
£¨5£©ÕýÏÒ¡¢ÓàÏÒ¡¢Ö¸ÊýÐźţºsin¡¢cos¡¢exp
3.Á¬ÐøÐźŵÄÏà¼Ó¡¢Ïà³Ë¡¢Ê±ÒÆ¡¢·´×ªºÍ³ß¶È±ä»»µÈ»ù±¾ÔËËã
£¨1£©Á½¸öÁ¬ÐøÐźŵÄÏà¼Ó
ÔÚMATLAB ÖÐҪʵÏÖÁ½¸öÁ¬ÐøÐźÅf1(t)¡¢f2(t)µÄÏà¼Ó£¬¿ÉÓÃÈçÏÂÓï¾ä£ºx=f1+f2 % x(t)= f1(t)+f2(t) £¨2£©Á½¸öÁ¬ÐøÐźŵÄÏà³Ë
ÔÚMATLAB ÖÐҪʵÏÖÁ½¸öÁ¬ÐøÐźÅf1(t)¡¢f2(t)µÄÏà³Ë£¬¿ÉÓÃÈçÏÂÓï¾ä£ºx=f1*f2 % x(t)= f1(t) f2(t)
£¨3£©Á¬ÐøÐÅºÅµÄÆ½ÒÆ
ҪʵÏÖÁ¬ÐøÐźÅf(t)ÏòÓÒÆ½ÒÆt0£¬MATLAB Óï¾ä¸ñʽΪ£º x=subs(f,t,t-t0) % x(t)= f(t-t0) £¨4£©Á¬ÐøÐźŵķ´×ª
ҪʵÏÖÁ¬ÐøÐźÅf(t)µÄ·´×ª£¬MATLAB Óï¾ä¸ñʽΪx=subs(f,t,-t) % x(t)= f(-t) £¨5£©Á¬ÐøÐźŵij߶ȱ任
ҪʵÏÖÁ¬ÐøÐźÅf(t)µÄ³ß¶È±ä»»£¬MATLAB Óï¾ä¸ñʽΪ£º x=subs(f,t,a*t) % x(t)= f(at)
ҪʵÏÖÁ¬ÐøÐźÅf(t)µÄÆ½ÒÆ¡¢³ß¶È±ä»»µÄ×ÛºÏÔËË㣬MATLAB Óï¾ä¸ñʽΪ£º
x=subs(f,t,a*t-b) % x(t)= f(at-b) (6) Á¬ÐøÐźŵľí»ýÔËËã
ÓÉÓÚMATLAB ÔËËãµÄÌØµã£¬Á½¸öÁ¬ÐøÐźÅf1(t)¡¢f2(t)µÄ¾í»ý
f(t)=f1(t)*f2(t)£¬ÓÃMATLAB ʵ
ÏֵĹý³ÌӦΪ£º
A£®½«Á¬ÐøÐźÅf1(t)¡¢f2(t)ÒÔʱ¼ä¼ä¸ô¦¤½øÐÐÈ¡Ñù£¬µÃÀëÉ¢ÐòÁÐf1(k
)¡¢f2(k
)£»
B£®¹¹Ôìf1(k)¡¢f2(k)ÓëÏà¶ÔÓ¦µÄʱ¼äÏòÁ¿k1 ºÍk2£» C£®µ÷ÓÃconv()º¯Êý¼ÆËã¾í»ý»ý·Öf(t)µÄ½üËÆÏòÁ¿f(kD£®¹¹Ôìf(k
)¶ÔÓ¦µÄʱ¼äÏòÁ¿k¡£
)£»
ÏÂÃæÊÇÀûÓÃMATLAB ʵÏÖÁ¬ÐøÐźží»ýÔËËãµÄͨÓú¯Êý
Ïà¹ØÍÆ¼ö£º