Mm4π2G2=m2RRT
R3T=2πGM,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约求得
a?=为84min,此值远小于地球自转周期,而向心加速度速度。
2g=9.8ms 已知地球的半径为R=6400km,地球表面附近的重力加速度,若发射一颗地球的
GM2=9.8msR2远大于自转时向心加
同步卫星,使它在赤道上空运转,其高度和速度应为多大?
:设同步卫星的质量为m,离地面的高度的高度为h,速度为v,周期为T,地球的质量为M。同步卫星的周期等于地球自转的周期。
GMm=mgR2 ①
GMm?R+h?2?2π?=m?R+h????T?2 ②
由①②两式得
RTg3h=3-R?4π2?3.56?107mG又因为
22?6400?103???24?3600??9.8224?3.142m?6400?103m
Mm?R+h?2v2=m?R+h? ③
由①③两式得
v=Rg?ms?3.1?103ms37R+h6400?10?3.56?10
2?6400?103??9.827:h?3.56?10mv?3.1?10ms
GMmG2=mg2R+h??R和在轨道上
3Mm:此题利用在地面上
?2π?=m?R+h????T?2两式联立解题。
下面关于同步卫星的说法正确的是( )
A .同步卫星和地球自转同步,卫星的高度和速率都被确定
B .同步卫星的角速度虽然已被确定,但高度和速率可以选择,高度增加,速率增大;高度降低,速率减小
C .我国发射的第一颗人造地球卫星的周期是114分钟,比同步卫星的周期短,所以第一颗人造地球卫星离地面的高度比同步卫星低
D .同步卫星的速率比我国发射的第一颗人造卫星的速率小 :ACD
三、第七章机械能守恒定律 (一)、知识网络
概念:力和力的方向上的位移的乘积
F与L同向:W=FL 功 α<900,W为正 公式 F与L不同向:W=FLcosα α=900,W=0 功和功率 α>900,W为负 机械概念:功跟完成功所用的时间的比值
(二)、重点内容讲解 1.机车起动的两种过程 一恒定的功率起动
机车以恒定的功率起动后,若运动过程所受阻力f不变,由于牵引力F=P/v随v增大,F减小.根据牛顿第二定律a=(F-f)/m=P/mv-f/m,当速度v增大时,加速度a减小,其运动情况是做加速度减小的加速运动。直至F=F'时,a减小至零,此后速度不再增大,速度达到最大值而做匀速运动,做匀速直线运动的速度是
vm=P/f,下面是这个动态过程的简单方框图 速度 v 当a=0时
a =(F-f)/m 即F=f时 保持vm匀速 F =P/v v达到最大vm 变加速直线运动 匀速直线运动 这一过程的v-t关系如图所示 车以恒定的加速度起动
由a=(F-f)/m知,当加速度a不变时,发动机牵引力F恒定,再由P=F·v知,F一定,发动机实际输出功P 随v的增大而增大,但当增大到额定功率以后不再增大,此后,发动机保持额定功率不变,继续增大,牵引力减小,直至F=f时,a=0 ,车速达到最大值vm= P额 /f,此后匀速运动 在P增至P额之前,车匀加速运动,其持续时间为 t0 = v0/a= P额/F·a = P额/(ma+F’)a
(这个v0必定小于vm,它是车的功率增至P额之时的瞬时速度)计算时,先计算出F,F-F’=ma ,再求出v=P额/F,最后根据v=at求t
在P增至P额之后,为加速度减小的加速运动,直至达到vm.下面是这个动态过程的方框图. P=F定v 当P=P额时 a定=(F-f)/m 即P随v增a=(F-f)/m≠0 F=P/v增大 即F一定 大而增大 v还要增大 a=(F-f)/减小
匀加速直线运动 变加速直线运动 当a=0时 保持vm 即F=f时 匀速运动 v最大为 vm 匀速直线运动 v vm
注意:中的仅是机车的牵引力,而非车辆所受的合力,这一点在计算题目中极易出错.
实际上,飞机’轮船’火车等交通工具的最大行驶速度受到自身发动机额定功率P和运动阻力f两个因素的共同制约,其中运动阻力既包括摩擦阻力,也包括空气阻力,而且阻力会随着运动速度的增大而增大.因此,要提高各种交通工具的最大行驶速度,除想办法提高发动机的额定功率外,还要想办法减小运动阻力,汽车等交通工具外型的流线型设计不仅为了美观,更是出于减小运动阻力的考虑. 2. 动能定理
内容:合力所做的功等于物体动能的变化
表达式:W合=EK2-EK1=ΔE或W合= mv22/2- mv12/2 。其中EK2表示一个过程的末动能mv22/2,EK1表示这个过程的初动能mv12/2。 物理意义:动能地理实际上是一个质点的功能关系,即合外力对物体所做的功是物体动能变化的量度,动能变化的大小由外力对物体做的总功多少来决定。动能定理是力学的一条重要规律,它贯穿整个物理教材,是物理课中的学习重点。 说明:动能定理的理解及应用要点
动能定理的计算式为标量式,v为相对与同一参考系的速度。 动能定理的研究对象是单一物体,或者可以看成单一物体的物体系.
动能定理适用于物体的直线运动,也适用于曲线运动;适用于恒力做功,也适用于变力做功,力可以是各种性质的力,既可以同时作用,也可以分段作用。只要求出在作用的过程中各力做功的多少和正负即可。这些正是动能定理解题的优越性所在。
若物体运动的过程中包含几个不同过程,应用动能定理时,可以分段考虑,也可以考虑全过程作为一整体来处理。 3.动能定理的应用
一个物体的动能变化ΔEK与合外力对物体所做的功W具有等量代换关系,若ΔEK?0,表示物体的动能增加,其增加量等于合外力对物体所做的正功;若ΔEK?0,表示物体的动能减小,其减少良等于合外力对物体所做的负功的绝对值;若ΔEK=0,表示合外力对物体所做的功等于零。反之亦然。这种等量代换关系提供了一种计算变力做功的简便方法。
动能定理中涉及的物理量有F、L、m、v、W、EK等,在处理含有上述物理量的力学问题时,可以考虑使用动能定理。由于只需从力在整个位移内的功和这段位移始末两状态动能变化去考察,无需注意其中运动状态变化的细节,又由于动能和功都是标量,无方向性,无论是直线运动还是曲线运动,计算都会特别方便。 动能定理解题的基本思路
选取研究对象,明确它的运动过程。
分析研究对象的受力情况和各个力做功情况然后求各个外力做功的代数和。 明确物体在过程始末状态的动能EK1和EK2。
列出动能定理的方程W合=EK2-EK1,及其他必要的解题过程,进行求解。 4.应用机械能守恒定律的基本思路:
相关推荐: