第一范文网 - 专业文章范例文档资料分享平台

2019-2020年中考数学试题分类汇编解析 动态问题

来源:用户分享 时间:2025/8/26 9:28:38 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

2019-2020年中考数学试题分类汇编解析 动态问题

一、选择题

1. (2014?山东潍坊,第8题3分)如图,已知矩形ABCD的长AB为5,宽BC为4.E是BC边上的一个动点,AE⊥上EF,EF交CD于点F.设BE=x,FC=y,则点 E从点B运动到点C时,能表示y关于x的函数关系的大致图象是( )

考点:动点问题的函数图象.

分析:易证△ABE∽△ECF,根据相似比得出函数表达式,在判断图像. 解答:因为△ABE∽△ECF,则BE:CF=AB:EC,即x:y=5:(4-x)y, 整理,得y=-?14(x-2)2+, 554)的抛物线.对应A选项. 5很明显函数图象是开口向下、顶点坐标是(2,故选:A.

点评:此题考查了动点问题的函数图象,关键列出动点的函数关系,再判断选项.

2. (2014?山东烟台,第12题3分)如图,点P是?ABCD边上一动点,沿A→D→C→B的路径移动,设P点( )经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是

A.B.C. D .

考点:平行四边形的性质,函数图象.

分析:分三段来考虑点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;点P沿C→B的路径移动,△BAP的面积逐渐减小,据此选择即可. 解答:点P沿A→D运动,△BAP的面积逐渐变大;点P沿D→C移动,△BAP的面积不变;

点P沿C→B的路径移动,△BAP的面积逐渐减小.故选:A.

点评:本题主要考查了动点问题的函数图象.注意分段考虑.

3.(2014?甘肃兰州,第15题4分)如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是( )

A.B. C. D. 考点: 动点问题的函数图象. 分析: 根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象. 22解答: 解:①当0≤t≤4时,S=×t×t=t,即S=t. 该函数图象是开口向上的抛物线的一部分. 故B、C错误; ②当4<t≤8时,S=16﹣×(t﹣4)×(t﹣4)=t,即S=﹣t+4t+8. 该函数图象是开口向下的抛物线的一部分. 故A错误. 故选:D. 22 点评: 本题考查了动点问题的函数图象.本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.

二、填空题

1. (2014?江苏徐州,第18题3分)如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为

2ycm,y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为 y=﹣3x+18 .

考点: 动点问题的函数图象.

分析: 根据从图②可以看出当Q点到B点时的面积为9,求出正方形的边长,再利用三角形的面积公式得出EF所在的直线对应的函数关系式.

解答: 解:∵点P沿边DA从点D开始向点A以1cm/s的速度移动;点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动. ∴当P点到AD的中点时,Q到B点,

从图②可以看出当Q点到B点时的面积为9, ∴9=×(AD)?AB, ∵AD=AB,

∴AD=6,即正方形的边长为6,

当Q点在BC上时,AP=6﹣x,△APQ的高为AB, ∴y=(6﹣x)×6,即y=﹣3x+18. 故答案为:y=﹣3x+18.

点评: 本题主要考查了动点函数的图象,解决本题的关键是求出正方形的边长.

三、解答题

1. (2014?四川巴中,第31题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.

(1)求抛物线的解析式;

(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.

考点:二次函数综合题.

分析:(1)根据抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,得到方程组

,解方程组即可求出抛物线的解析式;

(2)由于点M到达抛物线的对称轴时需要3秒,所以t≤3,又当点M到达原点时需要2秒,且此时点H立刻掉头,所以可分两种情况进行讨论:①当0<t≤2时,由

△AMP∽△AOC,得出比例式,求出PM,AH,根据三角形的面积公式求出即可;②当2<t≤3时,过点P作PM⊥x轴于M,PF⊥y轴于点F,表示出三角形APH的面积,利用配方法求出最值即可.

解答:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴, ∴

,解得:

,∴抛物线的解析式是:y=x2﹣x﹣4,

(2)分两种情况:

①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC, ∴

=

,即

=,∴PM=2t.

解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,

∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6. ∵AH=AB﹣BH=6﹣t,

∴S=PM?AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9, 当t=2时S的最大值为8;

②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP, 又∵CO=OB,

∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1, ∴S=PM?AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+当t=时,S最大值为

综上所述,点M的运动时间t与△APQ面积S的函数关系式是

S=,S的最大值为.

点评:本题是二次函数的综合题型,其中涉及到运用待定系数法求二次函数的解析式,三角形的面积,二次函数的最值等知识,综合性较强,难度适中.运用数形结合、分类讨论及方程思想是解题的关键. 2.(2014?湖南怀化,第24题,10分)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数关系式;

(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;

(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.

考点:二次函数综合题 专题:压轴题. 分析:(1)判断出△ABO是等腰直角三角形,根据等腰直角三角形的性质可得∠AOB=45°,

2019-2020年中考数学试题分类汇编解析 动态问题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4xbso6580h55mbv23rb17u3cm9b9nu004q4_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top