第三章线性规划对偶理论与灵敏度分析习题
一、 思考题
1. 对偶问题和对偶变量的经济意义是什么
2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么 3.什么是资源的影子价格它和相应的市场价格之间有什么区别
4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系
5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)xn?k 义是什么
7.在线性规划的最优单纯形表中,松弛变量xn?k的检验数?n?k 求最小值),其经济意义是什么 8.将aij?0,其经济意
?0(标准形为
,cj,bi的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解
将会出现什么变化有多少种不同情况如何去处理
二、 判断下列说法是否正确
1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。
3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。
4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。
5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量yi 划中,第i种资源已经完全用尽。
7.已知在线性规划的对偶问题的最优解中,对偶变量yi 划中,第i种资源一定还有剩余。 8.对于aij???0,说明在最优生产计
?0,说明在最优生产计
,cj,bi来说,每一个都有有限的变化范围,当其改变超出了这个范围
之后,线性规划的最优解就会发生变化。
9.若某种资源的影子价格为u,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 ku。
10.应用对偶单纯形法计算时,若单纯形表中某一基变量xi 所有元素都大于或等于零,则其对偶问题具有无界解。
三、 写出下列线性规划的对偶问题
?0,且xi所在行的
(1)maxZ?3x1?2x2?x3 (2)maxz?2x1?2x2?3x3?x4
?x1?x2?2x3?5?x1?x2?x3?x4?12?4x?2x?x?7?2x?x?3x??1?1?23123 ? ; ? ;
?x3?x4?3?3x1?2x2?x3?9?x1???x1,x2,x3?0?x1,x2?0,x3,x4无约束(3)minz?x1?2x2?3x3 (4)minz?x1?x2?2x3
?3x1?x2?2x3?5?2x1?x2?2x3?7?2x?4x?x?7?2x?3x?x?5??123123 ? ; ? ;
??x1?2x2?4x3?10??3x1?5x2?4x3?3???x1,x2?0,x3无约束?x1,x2?0,x3无约束(5)maxz?7x1?4x2?3x3 (6)minz?5x1?4x2?3x3
?7x3?8?4x1?2x2?6x2?24?2x1?3x?6x?4x?15?8x?5x?4x?15?1?12323 ? ; ? 。
5x2?3x3?304x2?6x3?30?????x1?0,x3?0,x2无约束?x2,x3?0,x1无约束四、 用对偶单纯形法求解下列线性规划问题 (1)minZ?3x1?2x2?x3 (2)maxz?2x1?2x2?4x3
?x1?x2?x3?6?x?x3?4?1 ? ;
x?x?323???x1,x2,x3?0(3)min?2x1?3x2?5x3?2?3x?x?7x?3?123 ? ;
x?4x?6x?523?1??x1,x2,x3?0z?12x1?8x2?16x3?12x4 (4)minz?5x1?2x2?4x3
?2?2x1?x2?4x3?3x1?x2?2x4?7?? ?2x1?2x2?4x4?3 ; ?6x1?3x2?5x3?12 ;
?x,x,x,x?0?x,x,x?0?1234?123
五、 对下列问题求最优解、相应的影子价格及保持最优解不变时cj与bi的变化范围。 (1)maxz?x1?x2?3x1 (2)maxz?9x1?8x2?50x3?19x4
?2x1?x2?2x3?2? ?3x1?2x2?x3?3 ; ?x,x,x?0?123(3)maxz?3x1?2x2?10x3?4x4?18? ? 4x3?x4?6 ;?x,x,x,x?0?1234?x1?4x2?3x3 (4)maxz?6x1?2x2?10x3?8x4
?5x1?6x2?4x3?4x4?20?2x1?2x2?x3?4?3x?3x?2x?8x?25?1?234 ; . x?2x?2x?6??122?4x1?2x2?x3?3x4?10?x,x,x?0?123??x1,x2,x3,x4?0六、 已知下表(表3—1)为求解某线性规划问题的最终单纯形表,表中x4为松弛变量,问题的约束为 形式
表 3—1
x2 x4 x1 x3 ,x5x5 1/1/1 0 /2 2 2 5--1/x1 1 0 /2 1/2 1/6 3 ---cj?zj 0 0 4 4 2 (1) 写出原线性规划问题; (2) 写出原问题的对偶问题; (3) 直接由表3—1写出对偶问题的最优解。 七、 某厂利用原料A、B生产甲、乙、丙三种产品,已知生产单位产品所需原料数、单件利润及有关数据如表1—4所示,分别回答下列问题: 表 3—2 原料拥甲 乙 丙 有量 A 6 3 5 45 B 3 4 5 30 单件 4 1 5 利润 x3 50
相关推荐: