第一范文网 - 专业文章范例文档资料分享平台

高中数学圆锥曲线问题常用方法经典例题

来源:用户分享 时间:2025/5/15 19:12:10 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

专题:解圆锥曲线问题常用方法(一)

解圆锥曲线问题常用以下方法:

【学习要点】

1、定义法

(1)椭圆有两种定义。第一定义中,r1+r2=2a。第二定义中,r1=ed1 r2=ed2。 (2)双曲线有两种定义。第一定义中,r?r12?2a,当r1>r2时,注意r2的最

小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法

因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。

3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆

锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x1,y1),B(x2,y2),弦AB中点为M(x0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1)x2y2?2?1(a?b?0)2ab与直线相交于A、

B,设弦AB中点为M(x0,y0),则有

x0y0?2k?02ab。

x2y2??1(a?0,b?0)a2b2 (2)

与直线l相交于

A、B,设弦AB中点为M(x0,y0)则有

x0y0?2k?02ab

(3)y2=2px(p>0)与直线l相交于

A、B设弦AB中点为M(x0,y0),则有2y0k=2p,即y0k=p.

【典型例题】

例1、(1)抛物线C:y2=4x上一点P到

点A(3,42)与到准线的距离和最小,则点 P的坐标为______________

(2)抛物线C: y2=4x上一点Q到点B(4,1)与到焦点F的距离和最小,则点Q的坐标为 。 分析:(1)A在抛物线外,如图,连PF,则PH?PF,因而易发现,当A、P、F三点共线时,距离和最小。 (2)B在抛物线内,如图,作QR⊥lAQHPFB

高中数学圆锥曲线问题常用方法经典例题.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4xvwc1uawn3z01x0bvw21wxgu8k84a00ndl_1.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top