设弦为AB,A(x1,y1),B(x2,y2)AB中点为(x,y),则y1=2x12,y2=2x22,y1-y2=2(x12-x22)
?y∴yx?x112?2(x1?x2)2 ∴2=2·2x,x?1 221
将x?1代入y=2x得y?,轨迹方程是22
x?12(y>1) 27、y2=x+2(x>2)
设A(x1,y1),B(x2,y2),AB中点M(x,y),则
22y12?2x1,y2?2x2,y12?y2?2(x1?x2),y1?y2?(y1?y2)?2
x1?x2∵kAB?kMP?y?0x?2y2
?2y?2,即y=x+2 ,∴x?2又弦中点在已知抛物线内P,即y2<2x,即x+2<2x,∴x>2
8、4
a2?b2?4,c2?8,c?22,令x?22代入方程得
8-y2=4
∴y2=4,y=±2,弦长为4 9、?2或?1
y=kx+1代入x2-y2=1得x2-(kx+1)2-1=0 ∴(1-k2)x2-2kx-2=0 ①
?1?k2?0????0得4k2+8(1-k2)=0,k=?2 ②1-k2=0得k=±1 y10、解:a2=25,b2=9,c2=16P 设F1、F2为左、右焦点,则F1(-4,0)F2(4,① 0)
xF1F2设PF?r,PF112?r2,?F1PF2?? r?r?2?则? ?r?r?2rrcos??(2c)12?1222212 ①2-②得2r1r2(1+cosθ)=4b2 ∴1+cosθ=
4b22b2?2r1r2r1r2 ∵r1+r2?2r1r2,
∴r1r2的最大值为a2 ∴1+cosθ的最小值为
?18252b2a2,即1+cosθ
0?????arccos7257cosθ??25, 则当???时,2sinθ取值得最大值1, 即sin∠F1PF2的最大值为1。 11、设椭圆方程为由题意:C、2C、∴
a24c?c??c即a2?2c2cx2y2??1(a?b?0)a2b2
a2?cc成等差数列,
,
∴a2=2(a2-b2),∴a2=2b2 椭圆方程为x2y2?2?122bb,设A(x1,y1),B(x2,
y2) 则
x221y2b2?1b2?1①
x2222b2?y2b2?1②
①-②得x2x221?2y212b2??y2b2?0
∴xm2b2?ymb2?k?0
即?22?k?0 ∴k=1
直线AB方程为y-1=x+2即y=x+3,入椭圆方程即x2+2y2-2b2=0x2+2(x+3)2-2b2=0 ∴
3x2+12x+18-2b2=0
AB?x11?x21?1?3122?12(18?2b2)2?43
代得
,
相关推荐: