第一范文网 - 专业文章范例文档资料分享平台

应变式称重传感器的设计与计算

来源:用户分享 时间:2025/6/1 13:37:54 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

注意:1、应变计1、4和2、3为单轴结构或90°应变花,在圆筒表面相隔180°粘

贴。

2、在载荷P方向,应变计1、3受拉伸,应变计2、4受压缩。

图2 电阻应变计位置图

图2是圆柱式称重传感器的一个例子,有关计算圆柱应力S的传统公式如下:

S?PA (7)

式中:P—轴向载荷。

A—圆柱横截面面积(图2的A-A部分)。 S—拉伸或压缩应力。

既然这是一个单轴向载荷的圆柱,就可应用虎克定律,其应力、应变可用如下公式计算:

e1?SEm (8) (9)

S=e1Em

式中:Em—弹性模量。

e1—1号应变计的轴向应变值。

圆柱式称重传感器电桥的输出应由公式(5)计算。

既然圆柱的尺寸大小是固定的,正如下面例子所给出的:假设一个额定载荷为P=2500Ib(磅)的钢制弹性体,弹性模量Em=10.63106psi(磅/英寸2),圆筒的外径为2.0英寸,内径为1.75英寸。通过计算其横截面面积为A=0.736英寸2。

为通过公式(3)和(4)确定N,e1=e3,e2=e4=μe1,式中μ为泊松比。代入公式(3)和(4),其结果为:

N=1+μ+1+μ=2(1+μ)

由于钢的μ值为0.32,所以N=2.64。 利用公式(7)计算应力,即

S?PA?25000.736?3396磅/英寸。

2

通过公式(8)确定应变计1的应变值,即

e1?SEm?339610.6?106=320×10-6

通常写为e1=320microinches/inch(微英寸/英寸)。

如果应变计灵敏系数(由制造商提供)为2.0,代入公式(5)中,计算结果如下:

E0Ei?2.0?2.64?320?104?6?0.422mv/v

这说明如果给电桥施加Ei=10V激励电压,一个2500磅的载荷施加在称重传感器上时,输出的变化应为E0=4.22mv。一个典型的商用称重传感器的额定输出为从2.00到3.00mv/v或从20到30mv(施加10v激励电压时),所以0.422mv/v是一个较低的输出。

若要增大这个例子中圆筒式称重传感器的输出,我们可以作很多工作。

(A)为求所需要的横截面面积A,假定计算灵敏度为2.0mv/v,就必须选择能形成这一面积的外径。可在圆柱弹性体表面粘贴应变计并使其受载进行验证,直到得出满足要求的直径为止。如果这种方法不行,可以试验下一个方法。

(B)电桥输出电压E0与输入电压Ei成正比,输入电压受材料,电桥电阻,应变计尺寸等限制(见参考文献[3])。假定施加在电桥上的最大推荐电压为10V,要想应用更高的电压,可通过加大电桥电阻的方法,即采用更大电阻的应变计。图2展示的4个应变计,其中两个应变计在0°位置上(或粘贴一个90°的应变花),另两个应变计在180°位置上(或粘贴第2个应变花)。应用8个应变计的电桥,在圆柱表面沿0°,90°,180°和270°粘贴90°的应变花,电桥各臂电阻会增大一倍。这时输入电压可增大,但是由于推荐应用于电桥的电压与电阻的平方根成比例,所以这只能增加输出值的1.41倍。另外,如果应变计的栅长和栅宽分别由1/8英寸增大到1/4英寸时,应变计的面积便增加了4倍,而输出增加一倍。现在总输出增加了(1.41×2)或2.82倍,电桥电压会增加到28.2V,输出由11.9mv取代了4.22mv。

柱式称重传感器的误差来源

一个泊松电桥(两个应变计测量主应变,另两个应变计测量由于泊松比影响而产生的应变)是固有的非线性电桥。对于一个灵敏度为2.0mv/v的称重传感器,这种固有的非线性大约为0.10%。电桥的非线性可以被另一个非线性部分所抵消一些。引起另一个非线性的原因是由于泊松比使得柱式弹性体横截面面积增加或减少。例如,当称重传感器承受压向载荷时,横截面面积增加,使压缩应力减小;当承受拉向载荷时,就是相反的情况。对于一个灵敏度为2.0mv/v的称重传感器,由于截面积变化引起的非线性误差大约为0.05%,所以总的非性误差为0.10%~0.05%或者0.05%。这是非常小的通常可以忽略不计,但是在称重传感器检测数椐中,这是应该被检测的误差。精密的商用称重传感器应利用附加的半导体应变计,此半导体应变计被粘贴在弹性体上,并串联在电桥电路的供桥端来补偿非线性。

注意图2圆柱式弹性体上应变计的安排,全部应变计被粘贴在同一个平面上,例如纵向应变计1和3为0°和180°,横向应变计2和4为90°和270°,且所有应变计的中心线处于一个横截面的水平线上。圆柱上的应变计如图2安排,有两个原因:

(A)弯曲应力是误差的来源之一,必须使之最小化。理论上,当应变计如图1和2粘贴连线时(如测量拉伸与压缩应力),弯曲应力被消除。因为并不存在准确完美的贴片,建议采取其它方法使得弯曲应力产生的误差尽可能接近于零。在圆柱上弯曲力矩的方向通常是可以确定的,应变计应粘贴在圆柱弯曲力矩最小处,且在中轴线上(见图2),那里的弯曲应力理论上为零。

(B)如果圆柱大且应变计在同一个平面间隔90°粘贴,圆柱周围的任何温度变化都会导致信号漂移。所以电桥相邻两臂的应变计应尽量靠近粘贴,从而减少温度误差,这也是利用90°应变花的原因之一。

弯曲型称重传感器

设计过程与柱式结构有所不同,概述如下:

(A)由公式(3)和(4)确定有效应变N,通常是用公式(4)。 (B)为提供所需要的输出,由公式(6)确定要求的应变。 (C)通过公式(9),由应变算应力。 (D)根据载荷与尺寸大小建立应力公式。

(E)为计算所需尺寸大小,用(C)中计算出的应力替代(D)中产生的应力。 这是为满足所需要的输出,求得称重传感器尺寸大小的最普通方法。另一方面,如果已给出了尺寸大小,而输出E0/Ei是所要求得的,那么应依照前面所介绍的圆柱式称重传感器计算过程,应用公式(3)和(4),之后是公式(7)和(8),最后是公式(5)得到输出灵敏度E0/Ei。

图3 在载荷P作用下标准的双梁弯曲型称重传感器

图3是在载荷P作用下一个典型的双梁弯曲型称重传感器简图,为了看得清晰,去掉了外壳并加大了偏转度。这种商用称重传感器用于测量较低的载荷,应变计粘贴位置如图3所示。图1所示的电桥电路仍然有效。

图4 半根弯曲梁显示的2片应变计位置图

图4是一个自由体的简图,粘贴有2个应变计的半根应变梁。通常梁的大多数尺寸是固定的,厚度h根据所需要的输出进行计算。例如假定所需要的输出灵敏度E0/Ei是3.0mv/v,首先计算出有效应变值,既然所有的应变计产生相等的应变,由公式(3)和(4)得出N=4。制造商提供的应变计灵敏系数为2.1,接下来为提供所需要的输出,需

搜索更多关于: 应变式称重传感器的设计与计算 的文档
应变式称重传感器的设计与计算.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4yan118gsx2nsft0jg8d_2.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top