识有明显的增长,但这只是冰山一角,lncRNAs在癌症中行使的复杂生物学功能,其详细的调控机制仍有待深入研究。
参考文献
1. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009; 136(4): 629-41.
2. Sahu A, Singhal U, Chinnaiyan AM. Long noncoding RNAs in cancer: from function to translation. Trends in Cancer. 2015; 1(2): 93-109.
3. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer discovery. 2011; 1(5): 391-407.
4. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464(7291): 1071-6.
5. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding
RNA
HOTAIR
regulates
polycomb-dependent
chromatin
modification and is associated with poor prognosis in colorectal cancers. Cancer research. 2011; 71(20): 6320-6.
6. Yang Z, Zhou L, Wu L-M, Lai M-C, Xie H-Y, Zhang F, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Annals of surgical oncology. 2011; 18(5): 1243-50.
7. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer research. 2012; 72(5): 1126-36.
8. Arab K, Park YJ, Lindroth AM, Sch?fer A, Oakes C, Weichenhan D, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Molecular cell. 2014; 55(4): 604-14.
9. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;
31(1): 27-36.
10. Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A, et al. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nature communications. 2014; 5.
11. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nature genetics. 2013; 45(11): 1392-8. 12. Wang Y, He L, Du Y, Zhu P, Huang G, Luo J, et al. The Long Noncoding RNA lncTCF7 Promotes Self-Renewal of Human Liver Cancer Stem Cells through Activation of Wnt Signaling. Cell stem cell. 2015; 16(4): 413-25.
13. Zhu Y, Rowley MJ, B?hmdorfer G, Wierzbicki AT. A SWI/SNF chromatin-remodeling
complex
acts
in
noncoding
RNA-mediated
transcriptional silencing. Molecular cell. 2013; 49(2): 298-309.
14. Han P, Li W, Lin C-H, Yang J, Shang C, Nuernberg ST, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014.
15. Reisman D, Glaros S, Thompson E. The SWI/SNF complex and cancer. Oncogene. 2009; 28(14): 1653-68.
16. Muller PA, Vousden KH. p53 mutations in cancer. Nature cell biology. 2013; 15(1): 2-8.
17. Vazquez A, Bond EE, Levine AJ, Bond GL. The genetics of the p53 pathway, apoptosis and cancer therapy. Nature reviews Drug discovery. 2008; 7(12): 979-87.
18. Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Molecular cell. 2014; 54(5): 777-90. 19. Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non‐coding RNA gadd7 interacts with TDP‐43 and regulates Cdk6 mRNA decay. The EMBO journal. 2012; 31(23): 4415-27.
20. Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine. 2012; 4(3): 143-59.
21. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011; 146(3): 353-8.
22. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Molecular cell. 2014; 54(5): 766-76.
23. Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh C-L, Feinberg AP. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer research. 2002; 62(22): 6442-6.
24. Zhuang M, Gao W, Xu J, Wang P, Shu Y. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochemical and biophysical research communications. 2014; 448(3): 315-22.
25. Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010; 31(3): 350-8.
26. Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, et al. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. 2014.
27. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature biotechnology. 2011; 29(8): 742-9.
28. Prensner JR, Chen W, Han S, Iyer MK, Cao Q, Kothari V, et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia. 2014; 16(11): 900-8.
29. Massagué J. TGFβ in cancer. Cell. 2008; 134(2): 215-30.
30. Taipale J, Beachy PA. The Hedgehog and Wnt signalling pathways in
cancer. nature. 2001; 411(6835): 349-54.
31. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006; 127(3): 469-80.
32. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocrine reviews. 2004; 25(2): 276-308.
33. Clemons M, Goss P. Estrogen and the risk of breast cancer. N engl J med. 2001; 344(4): 276-85.
34. Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. Journal of Clinical Oncology. 2005; 23(32): 8253-61.
35. Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Kein?nen R, Palmberg C, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nature genetics. 1995; 9(4): 401-6.
36. Sharifi N, Gulley JL, Dahut WL. Androgen deprivation therapy for prostate cancer. Jama. 2005; 294(2): 238-44.
37. Malik R, Patel L, Prensner JR, Shi Y, Iyer MK, Subramaniyan S, et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Molecular Cancer Research. 2014; 12(8): 1081-7.
38. Sakurai K, Reon BJ, Anaya J, Dutta A. The lncRNA DRAIC/PCAT29 Locus Constitutes a Tumor-Suppressive Nexus. Molecular Cancer Research. 2015; 13(5): 828-38.
相关推荐: