第一范文网 - 专业文章范例文档资料分享平台

2018年高考一轮复习高中数学立体几何知识点总汇编

来源:用户分享 时间:2025/5/30 16:14:20 本文由loading 分享 下载这篇文档手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xxxxxxx或QQ:xxxxxx 处理(尽可能给您提供完整文档),感谢您的支持与谅解。

实用文档

即:

1.4 常用的判定或证明线面垂直的依据 ⑴ 利用定义,用反证法证明。 ⑵ 利用判定定理证明。

⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。 ⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。

⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。 ★1.5 三垂线定理及其逆定理

⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。

如图:

⑵ 三垂线定理及其逆定理

已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面 α内的一条直线。

① 三垂线定理:若a⊥OA,则a⊥PA。即垂直射影则垂直斜线。 ② 三垂线定理逆定理:若a⊥PA,则a⊥OA。即垂直斜线则垂

图2-7 斜线定理

大全

实用文档

直射影。

⑶ 三垂线定理及其逆定理的主要应用 ① 证明异面直线垂直; ② 作出和证明二面角的平面角; ③ 作点到线的垂线段。 2 面面斜交和二面角

2.1 二面角的定义:两平面α、β相交于直线l,直线a是α内的一条直线,它过l上的一点O且垂直于l,直线b是β内的一条直线,它也过O点,也垂直于l,则直线a、b所形成的角称为α、β的二面角的平面角,记作∠α-l-β。 2.2 二面角的范围:∠α-l-β ∈[0°,180°] 2.3 二面角平面角的作法:

⑴ 定义法:证明起来很麻烦,一般不用; ⑵ 三垂线法:常用方法;

⑶ 垂面法:常用于空间几何体中的二面角。 3 面面垂直

图2-9 面面垂直 3.1 面面垂直的定义:若二面角α-l-β的平面角为90°,则两平面α⊥β。

图2-8 三垂线定理

3.2 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 即:

3.3 面面垂直的性质定理

⑴ 若两面垂直,则这两个平面的二面角的平面角为90°; ⑵

大全

实用文档

⑶ ⑷

三 立体几何主要难点 1 三种角的对比

角的类型 异面直线 所成角 范围 解题步骤 图2-11 面面垂直性质3 图2-10 面面垂直性质2

0°~90° 1找:利用平移法找出异面直线所成角; ⑴ 固定一条直线,平移另一条直线, ⑵ 将两条直线都平移至一特殊位置。 2证:证明所作出的角就是异面直线所成角或其补角,常需证明线线平行; 3计算:通过解三角形,算出异面直线角的角度。 直线与平面 0°~90° 1找:作出斜线与其在平面内射影的夹角,一般用三垂线定理; 所成角 2证:证明所作出的角就是直线与平面所成角或其补角,常证明线面垂直; 3计算:通过解三角形,求出线面角的角度。 二面角的 平面角 0~π 1作:根据二面角平面角的定义,作出这个平面角; 2证:证明所作的角就是二面角的平面角,常用三垂线法和垂面法; 3计算:通过解三角形,求出二面角平面角的角度。 大全

实用文档

2 立体几何知识网络

大全

2018年高考一轮复习高中数学立体几何知识点总汇编.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印
本文链接:https://www.diyifanwen.net/c4yxcm6k2zx8uhsm07tfq670et7c26i0177t_4.html(转载请注明文章来源)
热门推荐
Copyright © 2012-2023 第一范文网 版权所有 免责声明 | 联系我们
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:xxxxxx 邮箱:xxxxxx@qq.com
渝ICP备2023013149号
Top