实用文档
即:
1.4 常用的判定或证明线面垂直的依据 ⑴ 利用定义,用反证法证明。 ⑵ 利用判定定理证明。
⑶ 一条直线垂直于平面而平行于另一条直线,则另一条直线也垂直与平面。 ⑷ 一条直线垂直于两平行平面中的一个,则也垂直于另一个。
⑸ 如果两平面垂直,在一平面内有一直线垂直于两平面交线,则该直线垂直于另一平面。 ★1.5 三垂线定理及其逆定理
⑴ 斜线定理:从平面外一点向这个平面所引的所有线段中,斜线相等则射影相等,斜线越长则射影越长,垂线段最短。
如图:
⑵ 三垂线定理及其逆定理
已知PO⊥α,斜线PA在平面α内的射影为OA,a是平面 α内的一条直线。
① 三垂线定理:若a⊥OA,则a⊥PA。即垂直射影则垂直斜线。 ② 三垂线定理逆定理:若a⊥PA,则a⊥OA。即垂直斜线则垂
图2-7 斜线定理
大全
实用文档
直射影。
⑶ 三垂线定理及其逆定理的主要应用 ① 证明异面直线垂直; ② 作出和证明二面角的平面角; ③ 作点到线的垂线段。 2 面面斜交和二面角
2.1 二面角的定义:两平面α、β相交于直线l,直线a是α内的一条直线,它过l上的一点O且垂直于l,直线b是β内的一条直线,它也过O点,也垂直于l,则直线a、b所形成的角称为α、β的二面角的平面角,记作∠α-l-β。 2.2 二面角的范围:∠α-l-β ∈[0°,180°] 2.3 二面角平面角的作法:
⑴ 定义法:证明起来很麻烦,一般不用; ⑵ 三垂线法:常用方法;
⑶ 垂面法:常用于空间几何体中的二面角。 3 面面垂直
图2-9 面面垂直 3.1 面面垂直的定义:若二面角α-l-β的平面角为90°,则两平面α⊥β。
图2-8 三垂线定理
3.2 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 即:
3.3 面面垂直的性质定理
⑴ 若两面垂直,则这两个平面的二面角的平面角为90°; ⑵
大全
实用文档
⑶ ⑷
三 立体几何主要难点 1 三种角的对比
角的类型 异面直线 所成角 范围 解题步骤 图2-11 面面垂直性质3 图2-10 面面垂直性质2
0°~90° 1找:利用平移法找出异面直线所成角; ⑴ 固定一条直线,平移另一条直线, ⑵ 将两条直线都平移至一特殊位置。 2证:证明所作出的角就是异面直线所成角或其补角,常需证明线线平行; 3计算:通过解三角形,算出异面直线角的角度。 直线与平面 0°~90° 1找:作出斜线与其在平面内射影的夹角,一般用三垂线定理; 所成角 2证:证明所作出的角就是直线与平面所成角或其补角,常证明线面垂直; 3计算:通过解三角形,求出线面角的角度。 二面角的 平面角 0~π 1作:根据二面角平面角的定义,作出这个平面角; 2证:证明所作的角就是二面角的平面角,常用三垂线法和垂面法; 3计算:通过解三角形,求出二面角平面角的角度。 大全
实用文档
2 立体几何知识网络
大全
相关推荐: